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Abstract

We propose robust option-implied measures of conditional volatility, skewness and kur-

tosis based upon quantiles and expectiles inferred from weekly options on the S&P 500. All

quantities are by construction forward-looking and estimated non-parametrically through

a novel robust and arbitrage-free natural smoothing spline technique that produces quick

to estimate volatility smiles. We find that some of the option-implied robust indicators

exhibit short-, medium- and long-term predictive ability for the U.S. equity risk premium

and higher moments, both in- and out-of-sample, which outperform equal indicators inferred

from historical returns.
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1 Introduction

Option contracts are forward-looking financial assets that embed the investors’ expectations for

different future states of the world (strike prices) at different time horizons (time-to-maturity).

These expectations naturally contain the investors’ risk preferences, which determine the in-

vestors’ required expected rate of return for any asset pricing framework. As a consequence,

functions of option market data might contain valuable information for forecasting future returns.

Using weekly options written on the S&P 500, we derive short-term (weekly) option-implied

quantiles and expectiles, and check their forecasting power through different conditional and

forward-looking robust indicators. More precisely, after calibrating the option prices through

a novel natural smoothing spline technique, that produces arbitrage-free and robust volatility

smiles, we infer option-implied conditional quantiles and expectiles non-parametrically. From

them, we calculate different robust option-implied measures of conditional dispersion (volatil-

ity), asymmetry (skewness), and flatness (kurtosis) and test their forecasting power. We find

that some of these indicators have short-, medium- and long-term forecasting power, both in-

and out-of-sample, that is not present in the same indicators once estimated using realized

returns in the underlying asset.

Being extremely noisy, assessing the investors’ beliefs from option-market data is a deli-

cate task which is highly dependent on the pricing model used in estimation. Moreover, the

forecasting accuracy of option-implied quantities also depends on the absence of arbitrage in

the related set of option prices. Overall, any option estimation thus requires absence of arbi-

trage in the option prices used, and correction for the noise that illiquid options could carry

in the estimation (Hentschel (2003)).1 We tackle this issue by proposing a novel approach to

estimate arbitrage-free volatility smiles (Section 3). We refer to such estimation approach as

the BIRS2 approach. The BIRS is made of two steps: first, we perform a cubic interpolation

over the implied volatility/delta space that gives a dense pre-estimate of the volatility smile

(Section 3.2). Second, we solve a quadratic program enabling us to compute the linear and

quadratic terms of a natural spline that yields arbitrage-free points over the full volatility smile

(Section 3.3). Importantly, the two steps are fully complementary. On one hand, the implied

volatility smile produced in the first step provides a good fit on the original data, but does

not ensure the absence of arbitrages. On the other hand, the piece-wise quadratic polynomial

estimated in the second step constrains all static arbitrages, but requires an accurate and dense

pre-estimation to reduce the error of the quadratic approximation between the spline knots.

1As documented by Hentschel (2003), implied volatility estimates are noisy and prone to bias, thus compromising
results linked to them, unless necessary pre-processing is conducted.
2The name BIRS is due to the surnames of the authors, in alphabetical order.
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Combining these two elements, we obtain a robust and arbitrage-free implied volatility smile,

which is then converted into prices that we will use to perform different forecasting exercises.

To asses the validity of the BIRS approach, in Section 4 we benchmark it on two popular

non-parametric approaches, namely the Positive Convolution Approximation (PCA) of Bon-

darenko (2003), and the Fast and Stable (FS) approach of Jackwerth (2004). The PCA uses

convolutions to estimate the risk-neutral distribution, while the FS is a curve fitting tech-

nique on the implied volatility. Our approach is also fully non-parametric, allowing us a fair

comparison across models.3 We find that the BIRS approach exhibits better performance in

recovering both the implied volatility smile and the observed option prices and from both real

and simulated data. More precisely, using real data we test which approach better recovers

(has a lower loss function) the implied volatility smile and option prices (Section 4.1). For the

simulated data, we perform a Monte Carlo experiment to test which technique performs better

in recovering the option-implied cumulative distribution function in period of high and low

volatility. For both the exercises, and in both situations (high and low volatility), the BIRS

approach exhibits superior performance with respect to the PCA and FS approaches.

Having removed possibly noisy and mispriced data, we test if weekly options posses some fore-

casting power. Since deep out-of-the-money options might not be traded, we propose quantile-

(or expectile-) based robust measures, which allow us to infer moments of the distribution

without using the entire distribution. The forecasting analysis is thus divided in three steps.

First, from the BIRS estimates, we infer conditional option-implied quantiles (Section 5.2) and

option-implied expectiles (Section 5.3). Second, from the estimated quantities, we infer robust

coefficients of conditional dispersion, asymmetry and flatness (Section 5.5). Finally, we test

their forecasting power on realized moments of S&P 500 returns over different time horizons.

Our results show that some robust option-implied indicators have in- and out-of-sample fore-

casting power on the first two realized moments of S&P returns (Section 6). Option-implied

indicators of dispersion perform well in-sample, with some 7 days-ahead R2 around 2%, and

increasing with the time-horizon of the estimates. Results are confirmed out-of-sample for

horizons of 26 weeks, where the option-implied conditional quantile and expectile dispersion

indicators produce an R2
OOS (Campbell and Thompson (2007)) using historical indicators as a

benchmark of above 18%. We also find that the option-implied conditional quantile and expec-

tile dispersion indicators R2
OOS in predicting volatility increases up to 52% in one week ahead

regressions. Aligned with the longer-term literature, we also document the lack in time-series

3The choice of the PCA and FS as benchmarks is twofold. First, it is due to their ability in recovering different
option-implied quantities, demonstrated by their extensive use in the literature for a number of empirical and
theoretical applications. Second, despite being all non-parametric, the PCA, the FS and the BIRS approaches are
among them fairly different techniques. This diversity produces an heterogeneous and more complete analysis.
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forecasting power in the higher moments of the distribution. Our short-term results complement

the existing literature which tells us that for predicting the market index return (excess return,

risk premiums), only a few implied quantities work: (1) ex-ante variance risk premium (VRP)

(Carr and Wu (2009), Bollerslev et al. (2009), and some follow-up papers splitting the VRP

into semi-variance risk premiums (for VRP it is relatively short-term predictability, i.e., one to

three months), which worked well only from 1996 to 2015-2017, and lost significance afterward;

(2) implied variance, esp. for simple returns, which is used to construct the variance-based lower

bound of expected excess market returns as in Martin (2017); (3) a combination of higher-order

moments forming the generalized lower bound as in Chabi-Yo and Loudis (2020); (4) implied

correlation, i.e. Driessen et al. (2009) or Buss and Vilkov (2012). However, there is no robust

evidence that higher-order implied moments quantifying distribution asymmetry or tail-fatness

predict market returns.4

Importantly our results are both economically and statistically robust. Economically it makes

sense for the expected return (volatility) to find higher (lower) forecasting power as the time-

horizons increases. It is in fact well-known that forecasting the expected returns at short time

horizons might be very difficult, due to the different price pressure that could make the price

diverge from the fundamental (estimated) one. Differently, the decreasing forecasting power

of the market volatility at long time horizon is again economically grounded, due to the well-

known clustering property of volatility (Engle (1982) and Bollerslev (1986)). From a statistical

viewpoint, we estimate Newey-West standard errors (Newey and West (1987)) with lags equal

to the number of weeks between observations.

While historically observed price-paths do not disclose the underlying process from which

they are generated, option prices enable the re-creation of the expected price distributions

in the form of implied densities (Linn et al. (2017), Barone-Adesi et al. (2020)). Specifically,

stock-based indicators are valid only if markets are ergodic and stationary as, due to the impos-

sibility of the model to react quickly to changing market scenarios, it is almost impossible to

forecast expected return. This is especially true at shorter time horizons. The non-parametric

and option-based nature of the proposed robust coefficients allows us to overcome these issues.

By construction, options are forward-looking financial assets, and their liquidity in major mar-

kets has become high enough to provide timely estimates with non-parametric models. Most of

these estimates follow from the seminal papers of Breeden and Litzenberger (1978) and Banz

and Miller (1978), which show how the expected future states of the underlying price can be

inferred by differentiating the option prices with respect to their strike prices. These quan-

4Recently, Alexiou and Rompolis (2022) condense option implied higher moments into a single score and sort
companies based on it into portfolios. They find that their constructed portfolios yield statistically significant
return.
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tities have been found to provide forward-looking information of predictive value for future

realizations of index returns (see, among others, the review of Figlewski (2018), or the survey

of Christoffersen et al. (2011) and references therein). Despite the growing literature on the

use of option market data for predictions, not much has been said on the forecasting power of

short-term option-implied quantiles and expectiles.

The aforementioned robust quantities - conditional dispersion indicators, conditional asym-

metry indicators and conditional flatness indicators - are all derived non-parametrically, with

the goal to preserve the subtleties of the shapes of the empirical data. Following Barone-Adesi

(2016) and Bellini et al. (2018) we derive non-parametric option-implied quantiles and expectiles,

respectively. Barone-Adesi (2016) shows how to use option-implied quantiles to infer option-

implied risk measures. The empirical analyses of Barone-Adesi et al. (2019), Barone-Adesi et al.

(2019) and Molino and Sala (2020), show that quantile-based option-implied value at risk (VaR)

and conditional value at risk (CVaR) are good alternatives to classical risk measures based on

historical returns. In particular, these indicators perform well when mostly needed - that is in

periods of high volatility - when the statistical properties of the underlying deviate the most

from the past, and cannot be captured using a large amount of historical returns.

Bellini et al. (2018) show how to infer option-implied expectiles. Bellini et al. (2021) test some

properties of the S&P 500 index option-implied expectiles, confirming its ability in producing

sensible risk measures without the need of a huge amount of data. We contribute to these

literatures by proposing new option-based robust indicators and testing the out-of-sample per-

formances of them.5

In terms of out-of-sample forecasting power Metaxoglou and Smith (2017) show that their

monthly State Prices of Conditional Quantiles (SPOQ) have a significative time series forecast-

ing power at long time horizons (18 to 24 months). Conrad et al. (2012) focus on the cross-section

by inferring the ex-ante higher moments of the underlying individual securities’ risk-neutral

distribution and find that they strongly related to future returns. We differ from Metaxoglou

and Smith (2017) and Conrad et al. (2012) by focusing at short time-horizon.6

We focus at short-term for a an interesting and natural reasons. While due to a lack of liquidity

the option literature has always (and correctly) discarded options with short time-to-maturity7,

weekly options changed the classical paradigm existing in the option literature. The liquidity

5Moreover, while some of the cited papers lay the ground to the theoretical foundation on option-implied quantiles
and expectiles, while others test some of their properties, none of them consider the importance of a solid volatility
smile for the estimation of their quantities.
6Another difference with Conrad et al. (2012) is that we focus on the time series, while they focus on the
cross-section. Not surprisingly, they find some forecasting power in the higher moments, which is not present in
the S&P 500 time series.
7Usually, only options up to 10 days have been considered
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of these assets has increased remarkably in the recent years and, as explored in Section 2,

accounts now for around the 40 to 50% of the entire total liquidity of the S&P 500 Index

options. This allows us to perform for the first time a short-term analysis of the forecasting

power of option-implied quantiles and expectiles.

Moreover, as aforementioned, forecasting returns at short-time horizons is of great challenge.

While it is reasonable to assume that the option-implied information in its entirety might

not be fully mapped into the physical measure, this bias is a decreasing function of the time

horizon in consideration.8 The use of short-term options thus allows us to forecast returns at

short time horizon, reducing the mapping problem as much as possible. Having said that, it is

worth stressing again how all the econometric models and tests proposed in this paper can be

extended to any time horizon and with no loss of generality.

2 Dataset

The empirical analysis of this paper is based upon data provided by OptionMetrics. We use

End-of-week (EOW) Friday weekly S&P 500 index options for the period January 2, 2011

to December 31, 2021. Option prices are recorded given their mid-closing prices (defined as

the arithmetic average of bid and ask closing prices) at 15:59 from OptionMetrics we also

obtain the term-structure of risk-free zero-coupon interest rates and the S&P 500 (continuously

compounded) dividend yield. S&P 500 index weekly options are short-term European options

written on the S&P 500 index, cash settled and with a fixed time-to-maturity of seven days

(five working days). Weekly options are listed under the root ticker symbol, “SPXW” and

are commonly included in SPX (traditional) options chains which are AM settled. Officially

introduced by the CBOE on October 28, 2005, weekly options start being actively traded one

year later. Due to their increasing adoption from the finance community, the CBOE launched

in the subsequent years weekly options for all days of the week.9 Nowadays SPXW options

8The pricing kernel, defined as the ratio of the risk-neutral over the physical measure, converges to 1 as the time
to maturity decreases:

St = ertT q · 1 = eRtT p · 1 (1)

where St is the current expected payoff of a primitive contingent claim under the risk-neutral measure, q, and
under the physical measure, p, respectively. In a complete and arbitrage-free economy the risk-neutral price
grows at the current risk-free rate, rt, whereas the physical price grows at the current risk-adjusted risk-free
rate, Rt. It goes by consequence that as the time to maturity T approaches zero, both quantities converge to
the same state price density, St; conversely, when T increases their divergence increases at the rate (R− r)T .
9As a consequence of the high interest from traders, the CBOE now proposes short-term options with even
shorter maturities (up to 2 days options) and written on many other underlyings, like equities (American style),
ETFs, ETNs, VIX and other indexes like the Dow Jones Industrial Average or the Russell 2000 Index. While
increasing, the liquidity of these products might still not high enough to work with non-parametric models.
Please see http://www.cboe.com/products/weeklys-options/available-weeklys.
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constitute more than 40% of the average daily volumes of all options traded on the S&P

500 Index, with an average number of daily options traded that went from below 10,000 per

day to above 500,000 per day. One possible reason that justifies the great interest of market

practitioners, above all market markers, on weekly options is their capability to provide a

not expensive (in terms of delta-hedging) and effective tool to hedge short-term market-wide

exposures. In particular, weeklys can provide a hedge to short-dated tail risks, without loading

on the unneeded volatility risk present in longer-term options (i.e.: monthly or quarterly). Also,

weeklys give traders the possibility to have a more targeted exposure to events, e.g.: economic

releases, earnings announcements. In this paper we use the Friday SPXW due to their longer

history and higher liquidity. Moreover, given that the liquidity starts being stable from 2011, we

drop from the dataset all data before 2011 such that the sample size of our analysis spans the

2011-2021 period. As reported by the CBOE, Fridays SPXW are typically listed on Thursday

and expire on Friday of the subsequent week10 and, for this reason, are also called the end-of-the-

week (EOW) weekly options.11 From a forecasting perspective weekly options are interesting

financial assets that allow for forward-looking estimates, still limiting the assumption that all

investors are neutral with respect to the risk. Moreover, from an academic viewpoint, weekly

options allow for an interesting change in the option literature. While in fact short-term options

have (correctly) always been discarded from most of empirical studies because of not being

liquid enough, weekly options are liquid enough to also work with non-parametric approaches.

3 The BIRS model

In this section we describe how we fit the arbitrage-free implied volatility smile that will then

be used as the input for the estimation of all option-implied based quantities of the paper.

After cleaning the dataset (Section 3.1), the estimation approach is made of two main parts,

among them linked one to another. Specifically, we apply a quadratic program for estimating

the linear and quadratic terms of piecewise polynomials (Section 3.3), describing the price of

call options as a function of their strikes. This method requires a dense pre-estimate. The

pre-estimate is obtained through a cubic spline interpolation on the implied volatility - delta

space (Section 3.2). The cubic interpolation requires a set of unique strike prices, and the

10The same applies to all other weeklies, e.g. Monday SPXW options typically expire on Monday, and Wednesday
SPXW options typically expire on Wednesday.
11An exception of this rules are if the exchange is closed on a Friday, and/or if the Friday expiration overlaps
with the expiration of monthly or quarterly options. In the former case all options are anticipated and so they
expire the first business day immediately prior to that Friday, in the latter case the Friday expiration of weekly
options is delayed to the next available Friday. In our case, whenever this happens, we substitute the quotation
of the weekly option with the corresponding quotation of the monthly or quarterly option that will expire in the
week.
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quality of the interpolation is determined by the starting point; we achieve this starting point

by cleaning the dataset following the option literature (Section 3.1).

3.1 Data cleaning

As it is common in the option literature, we clean the dataset to remove stale and/or irrational

option prices, and we only work with the most liquid assets. To avoid stale prices, we remove

all options with zero volume and zero open interest. To avoid possibly irrational prices, we

discard all options with a zero bid price and take the mid-prices, defined as the average of

the bid and ask prices as our option price in order to compute the specific implied volatility

of the option. Still to avoid possibly mispriced options, we discard all options with a very

high implied volatility (> 100%). Finally, to work with the most liquid assets, we only select

out-of-the-money options, and we convert out-of-the-money puts into in-the-money call options

via the put-call parity. Table 1 and table 2 provide summary statistics of the data filter and

an overview of the available number of options after the cleaning. This cleaned dataset is then

used to estimate the volatility smile.

Data filter Before After in percent

Friday expiration 310421 151715 51.13
Positive open interest 151715 104205 31.32
Positive volume 104205 73323 29.64
Positive Bid price 73323 73323 0.00
OTM call 73323 57304 21.85
OTM put 57304 49559 13.52
Starting in 2011 49559 49335 0.45
Implied Volatility higher 100% 49335 49143 0.39
Implied Volatiltiy not calculated 49143 49125 0.04

Table 1: Summary statistic data cleaning steps: The table summarizes the data filter
presented in Section 3.1
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mean std min 25% 50% 75% max

# Calls available 27.39 14.85 4.00 17.50 22.00 33.00 124.00
# Puts available 79.64 40.26 14.00 51.00 72.00 98.00 211.00
Strike calls 2824.06 940.40 1125.00 2110.00 2810.00 3390.00 4980.00
Strike puts 2577.23 830.36 800.00 1930.00 2515.00 3080.00 4695.00
S&P 500 2813.16 912.42 1123.53 2079.36 2760.17 3348.44 4697.96
Risk-free rate 0.01 0.01 0.00 0.00 0.00 0.01 0.02
Dividend yield 0.02 0.00 0.00 0.02 0.02 0.02 0.03

Table 2: Summary statistics data used for estimation: The table provides an overview
of the data used to estimate option implied quantiles and expectiles between 2011 and 2021.

3.2 Cubic smoothing spline

Once the raw data are cleaned, we interpolate to obtain a pre-estimate of the volatility surface.

For this, we follow and modify the approach of Bliss and Panigirtzoglou (2002) who themselves

combine and extend the approaches of Shimko (1993), Malz (1997a), Malz (1997b) and Campa

et al. (1998). Specifically, we interpolate the implied volatility curve over the implied volatil-

ity/delta space through a cubic smoothing spline, where the smoothing spline is the function

f that solves

minθ λ
n∑
i=1

wi(σi − σ̂i(δi, θ))2 + (1− λ)

∫ ∞
−∞

f ′′(x, θ)2dx, (2)

where θ is a set of parameters of the cubic spline (knot points and component polynomial

parameters), λ a smoothing parameter, wi the weights of the spline, σi the implied volatility,

and σ̂i(δi, θ) is the fitted implied volatility at δi. Differently from Bliss and Panigirtzoglou

(2002), we optimally set the smoothing parameter λ at each iteration, and we fix wi = 1.12 The

role of λ is to determine the goodness-of-fit of the fitted spline and its smoothness trade-off,

where smoothness is determined by the integrated squared second derivative of the implied

volatility function. For λ = 0, the function is the variational, or natural, cubic spline interpolant.

For λ = 1, the function is the least-squares straight-line fit to the data. Here is how we set these

two parameters. First, instead of fixing λ, we search for the optimal balance between having a

smooth curve and being close to the given data. Our optimization approach chooses a default

value for λ which is usually close to 1/(1 + h3/6), where h is the average spacing of the data

sites. Having set λ the calculation of the smoothing spline is the resolution of a linear system,

12 Bliss and Panigirtzoglou (2002) set λ equal to 0.99 or 0.9999 and wi = ν, where ν is the Black and Scholes
greek letter defined as the first derivative of the option price with respect to the option volatility. While their
choice was justified to obtain the best fit possible for the option-implied probability density function, here the
focus is on achieving the closest possible empirical fit of the volatility smile.
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whose coefficient matrix has the form λ ·A+ (1− λ) ·B, with the matrices A and B depending

on the data sites x. The default value of λ makes λ ∗ Tr(A) = (1 − λ) ∗ Tr(B). Second, the

role of wi is to determine how much weight to give to the ith option’s squared fitted implied

volatility error. While the central part of the distribution would benefit the most by setting

the wi equal to greek letter vega (as did by Bliss and Panigirtzoglou (2002)), here we set it

equal to one, as we are not only interested at-the-money. Finally, the choice of using the option

delta as the independent variable comes from Malz (1997a) and guarantees more stability in

the interpolation.13

Figure 1 depicts the fit of the implied volatility smile estimated using the presented approach.

The figure represents 9 days, picked at random, over the implied volatility/strike space in our

analysis, where the grey dots are the market prices of the option and the continuous black line

the result of the proposed interpolation.
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Figure 1: Implied volatility smile: obtained solving Equation 2 with wi = 1 and optimally
choosing λ ∈ [0, 1].

Having generated a set of fixed-maturity implied volatilities across a grid of deltas, we use

an option pricing model, e.g.: the Black and Scholes (1973) pricing model, to convert delta and

the implied volatilities into European option prices over the prices/strike space. It is worth

noticing that the delta and price conversion through the Black and Scholes model is just a

convenient choice that does not impose log-normality, or does not presume that the pricing

13Alternatively the implied volatility function can also be expressed as a function of strike or of moneyness.
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model correctly prices options.

3.3 Quadratic program to remove the remaining arbitrages

The presented pre-smoother might still be contaminated by arbitrages, above all into the tails

of the distribution. For example, given the sample of this paper, 17.2% of the option prices

are still contaminated by arbitrages which, in our case, leads to a cumulative density function

curve (CDF) that is either negative, greater than 1, or not strictly increasing with respect to

the strike (see Figure 2).14

Figure 2: Option-implied quantiles surface: The figure shows the time series of the option-
implied quantiles estimated as described in Section 5. The figure depicts the time-line on the
x-axis, the option-implied quantiles on the y-axis and the strike prices on the z-axis.

.

To fix any possibly remaining arbitrage on the interpolated smile, we apply the Fengler

(2009) quadratic program to the cleaned and interpolated smoother.15 As a main advantage,

the proposed approach does not change anything that does not have arbitrages, and removes

14How to estimate the quantile-based CDF depicted in Figure 2 and the relative analysis on the importance of
having no arbitrages in the tails are both presented in Section 5.
15As documented in Fengler (2009) and Green and Silverman (1994), the choice of the initial estimator is flexible
i.e.: any two-dimensional non-parametric smoother such as a local polynomial estimator or a thin plate spline
are valid candidates.

11



any still possibly contaminated price present in the smile. As detailed in Appendix A, at each

point t we solve the following quadratic program:

minx − yTx+
1

2
xTBx (3)

subject to ATx = 0 (4)

Where y is a vector of size 2n containing the n observed implied volatilities and n zeros, and

x is a vector of parameters specifying the natural cubic spline. Please note that while the

original Fengler (2009) approach is to fit the implied volatility surface, in this paper we do

not deal with the dimension of time, fitting only the implied volatility smile. More precisely,

focusing on short-term options, we fix T = 7 such that the final output of the quadratic program

is applied to the call option price/strike plane. The quadratic program in Equation 3 is convex,

thus solvable within polynomial time (see the quadratic optimization part of Floudas and

Visweswaran (1995)) and naturally casts a cubic smoothing spline in it (Green and Silverman

(1994)). The convexity property follows from the strict positive-definiteness of B and guarantees

the uniqueness of the solution. Moreover, shape constraining the spline smoother guarantees the

optimal rate of convergence in shape-restricted Sobolev classes (Mammen and Thomas-Agnan

(2002)). A snapshot of our estimation procedure is in Figure 3, that depicts the S&P 500 options

time series of weekly implied-volatility smile for the period 2011-2021.

Figure 3: Implied-volatility smile: for the S&P 500 index weekly options estimated with the
approach presented in Section 3. The figure depicts the strike prices on the x axis, the implied-
volatility on the y axis while the older-to-more-recent data of the time series are depicted with
a lighter-to-darker color.

As a final way to test the robustness of the estimation approach, and the models ability to

accommodate different market scenarios, Figure 4 depicts the implied volatility smile for low
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and high volatility days of the time series, respectively. Specifically, having the implied-volatility

smile on the y-axis and the strike prices on the x-axis, the top (bottom) panel of Figure 4

represents a day with low (high)16 volatility, which translates in an implied-volatility smirk

(smile).

0.80 0.85 0.90 0.95 1.00 1.05 1.10
Moneyness K/F

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Im
pl

ied
 v

ol
ati

lit
y

Interpolated
Market observed

0.80 0.85 0.90 0.95 1.00 1.05 1.10
Moneyness K/F

0

50

100

150

200

250

300

350

Op
tio

n 
pr

ice

Interpolated
Market observed

0.80 0.85 0.90 0.95 1.00 1.05 1.10
Moneyness K/F

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Im
pl

ied
 v

ol
ati

lit
y

Interpolated
Market observed

0.80 0.85 0.90 0.95 1.00 1.05 1.10
Moneyness K/F

0

50

100

150

200

250

300

350

Op
tio

n 
pr

ice

Interpolated
Market observed

High VIX day

Low VIX day

Figure 4: Implied-volatility smile: for two single days, both estimated with the approach
presented in Section 3. The upper (lower) panel depicts the estimated implied volatility and
the obtained option prices for a date in the sample on which the VIX was above (below) its
historical level. Both panels of the figure depict the moneyness (K/F ) on the x axis.

4 Alternative estimation approaches

In this section we first quickly recall the two estimation approaches that are used to validate

and compare our estimation approach with the existing (huge) literature, namely the PCA

of Bondarenko (2003) and the FS of Jackwerth (2004).17 Then, we compare the PCA and the

FS models with the BIRS approach proposed in this paper. To do it, we check their capability of

16The low (high) volatility day is March 21, 2014 (January 15, 2016) where the VIX index closed at 15% (27.02%).
17We are aware that this literature is incredibly vast and still growing. As such, to select the best alternative
approach to benchmark our proposal is a very difficult (if not impossible) task. To do it, in this paper we
place our focus on non-parametric models only, and we select the PCA and FS for the reasons presented in the
Introduction. Indeed, and not being the goal of the analysis, we do not pretend to provide any exaustive and/or
complete comparison.
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recovering the implied volatility and option market prices using observed real data (Section 4.1).

The PCA of Bondarenko (2003) is a non parametric approach that starts from a set

of admissible densities and optimally chooses the one that best fits a given cross-section of

empirically observed option prices. The set of admissible densities excludes all implausible

densities that are economically meaningless (e.g.: discontinuous functions) and is obtained

through the convolution of some arbitrary density function and a fixed kernel.

The FS of Jackwerth (2004) is the “fast and stable” approach which is related to the original

approach of Jackwerth and Rubinstein (1996) and Jackwerth (2000).18 The main objective of

the “fast and stable” approach is to find a smooth risk-neutral distribution which also explains

the observed option prices by first estimating an optimal smooth implied volatilities curve, and

then infer the risk-neutral distribution applying Breeden and Litzenberger (1978). Both the

PCA and the FS approaches are described in Appendix B and Appendix C, respectively.

4.1 Real data experiment

As a first test we use observed real market data from a cross section of option prices to

empirically validate the BIRS approach. Formally, we check its capability of recovering the

implied volatility and option market prices using observed real data, and we compare it with

the PCA and FS approaches. For each approach, we follow the literature and compute two loss

measures used to measure the accuracy of the estimates namely, the root mean squared error

(RMSE) and the mean absolute error (MAE):

RMSE =

[
1

N

N∑
i=1

(
yi − ŷi

)2
]1/2

MAE =
1

N

N∑
i=1

∣∣∣yi − ŷi∣∣∣
where i = 1, . . . , N denotes the total number of observations, yi the observed values, and ŷi the

interpolated ones. In clockwise order, the four panels of Figure 5 depict the entire time series

of the RMSE price, RMSE implied volatilities, MAE price, and MAE implied volatilities for

the three approaches presented, respectively. Placing on the x-axis the timeline of the analysis,

and on the y-axis the value of the loss function, the figures plot with a black continuous line

our approach (BIRS), in gray the FS approach and in light gray the PCA approach.

18While there is a substantial change from the approach in Jackwerth and Rubinstein (1996) to the subsequent
version in Jackwerth (2004), the only “difference” between Jackwerth (2004) and Jackwerth (2020) is a rewriting
of the scaling factor in the fit-smoothness objective function used for the optimization.
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Figure 5: Time series RMSE and MAE: Time series plots of the calculated RMSE and
MAE for the different methods to estimate risk-neutral densities (risk-neutral distributions).
The left hand side of the graphs display the mean dollar price deviations on a daily base within
the sample period. The right hand side of the graphs display the respective deviations in terms
of implied volatility.

From the figure it clearly emerges that for the entire time series in consideration, and for

both prices and implied volatilities, the BIRS approach produces much lower loss measures,

once compared with the FS and PCA approaches. While Figure 5 depicts graphically the entire

time series of RMSE and MAE, Table 3 summarizes the above findings, reporting different

summary statistics of the RMSE and MAE metrics, respectively.
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BIRS Jackwerth (2004) Bondarenko (2003)

Prices IV Prices IV Prices IV

RMSE

mean 0.2909 0.0021 0.2091 0.0053 0.8365 0.0240

std 0.1935 0.0013 0.2398 0.0035 1.3751 0.0198

min 0.0922 0.0009 0.0247 0.0011 0.0997 0.0034

25% 0.1694 0.0015 0.1031 0.0031 0.3105 0.0124

50% 0.2336 0.0018 0.1661 0.0044 0.5175 0.0183

75% 0.3680 0.0022 0.2581 0.0066 0.9170 0.0291

max 2.7562 0.0193 4.1889 0.0335 19.8959 0.2164

MAE

mean 0.3769 0.0032 0.4337 0.0081 1.1571 0.0286

std 0.3123 0.0025 0.4426 0.0050 1.5793 0.0226

min 0.1210 0.0012 0.0392 0.0017 0.1614 0.0040

25% 0.2209 0.0022 0.2090 0.0046 0.4811 0.0151

50% 0.2962 0.0026 0.3385 0.0069 0.7731 0.0224

75% 0.4611 0.0035 0.5560 0.0103 1.3052 0.0346

max 5.3922 0.0368 6.7896 0.0482 22.8134 0.2342

Table 3: RMSE and MAE: The table summarizes the root mean squared error (RMSE) and
the mean absolute error (MAE).The RMSE and MAE are calculated on a daily basis. Both
measures are calculated based on observed and interpolated option prices (Prices) and the
corresponding Black-Scholes implied volatility (IV).

Overall the BIRS approach clearly outperforms both the PCA and the FS approaches in terms

of IV. Results holds for the mean, and at all confidence levels. In terms of prices, the BIRS

approach is always the best performing model, but for some values of the RMSE (mean and

some percentiles). Focusing on the RMSE,19 the BIRS approach has a maximum value of

2.7562 (0.0193) for the prices (IV), which is lower than 4.1889 (0.0335) and above all the

19.8959 (0.2164) of the FS and PCA, respectively. For the other values, the BIRS approach is

comparable to the FS approach and always better than the PCA approach. Importantly, and

for both prices and IVs, the BIRS approach always displays the highest stability in estimation,

proxied by the lowest standard deviation. As a consequence of this stability, the max RMSE and

MAE of the BIRS approach are lower than both the FS and PCA. These results (and specifically

the higher stability of the BIRS approach) are the consequence of both the interpolation and

the quadratic problem presented in the previous sections, which lead to a lower presence of

possibly mispriced assets in estimation. This is especially true into the tails of the distribution,

where lies most of the option prices noise.

19Which by construction has values that are always greater or equal to the MAE.
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5 Option-implied quantiles and expectiles

In this section we first quickly recall the concepts of quantiles and expectiles (Section 5.1). Then

we explain how to infer option-implied quantiles (Section 5.2) and option-implied expectiles

(Section 5.3) from traded option prices. While quantiles are well-known statistical quantities

that have been heavily used for different applications (see, among others, the survey of Koenker

et al. (2017)), expectiles are less known in finance, perhaps due to their lower interpretabil-

ity. Despite being less intuitive than quantiles, expectiles have interesting and possibly even

superior statistical properties than quantiles, once used as risk management tool (Bellini and

Di Bernardino (2017)).

5.1 Quantiles and Expectiles

Given a random variable X on a filtered probability space (Ω,F ,P), a quantile qα determines

the value of X such that the probability of the variable being less than or equal to that value

equals α. It follows that for a probability density function f(x) the quantile qα splits the

distribution in two parts, which integrals are of size α and 1− α. Formally, if X is equipped

with a continuous and strictly monotonic distribution function FX(x) := P (X 6 x), then qα is

the unique solution of the equation:

FX(qα) = α (5)

Any quantile functions satisfies (see e.g. Föllmer and Schied (2016)):

q−α (X) 6 qα(X) 6 q+
α (X), for each α ∈ (0, 1),

where q−α (X) and q+
α (X) are the left and right quantiles, respectively defined by:

q−α (X) = inf{t ∈ R | FX(t) 6 α}

q+
α (X) = sup{t ∈ R | FX(t) > α}.

Equivalently, the left and right quantiles of the random variable X are defined as the minimizer

of the asymmetric linear loss function:

[q−α (X), q+
α (X)] = argmin

x∈R
E [α(X − x)+ + (1− α)(X − x)−] , α ∈ (0, 1).

In a financial context quantiles are (among others) often used for Value-at-Risk (Jorion (2007))

or quantile regressions (Koenker (2005)).
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First introduced by Newey and Powell (1987), expectiles are a one-parameter family of

coherent risk measure defined as the minimizers of an asymmetric quadratic loss function.

Formally, the expectile eθ of a random variable X ∈ L2(Ω,F , P ) is defined as:

eθ(X) := arg min
x∈R

E
[
θ(X − x)2

+ + (1− θ)(X − x)2
−
]
, θ ∈ (0, 1),

where (.)+ = max (., 0), (.)− = min (., 0). Expectiles combine the concept of “expectation” and

“quantiles” and are the asymmetric generalization of the mean, being that for θ = 1/2, we have

eθ(X) = E(X). Expectiles can also be conveniently defined for any X ∈ L1(Ω,F , P ) as the

unique solution of the first order condition:

θE[(X − eθ(X))+] = (1− θ)E[(X − eθ(X))−]. (6)

Statistically, quantiles and expectiles share many similar properties but differ substantially in

one aspect. While quantiles determine the value of X such that the probability of the variable

being less than or equal to that value equals a given level α, expectiles are linked to the

properties of the expectation of the random variable X, conditional on X being into the tail

of the distribution. Moreover, notice that for a given distribution function F 20, the values of θ

and α are related by the following formula (see e.g. Yao and Tong (1996)):

θ =
αqα −

∫ qα
−∞ xdF (x)

E(X)− 2
∫ qα
−∞ xdF (x)− (1− 2α)qα

(7)

For example, if X ∼ U [−a, a], then qα = 2αa − a, θ = α2/(2α2 − 2α + 1) and for α =

1%, 5%, 10%, 25%, 50% the values of θ are 0.01%, 0.27%, 1.2%, 10%, 50%. In a financial context

expectiles are related to but still different from, what is generally referred in risk management

as the Conditional Value at Risk (CVaR); as such contain information about what to expect

when the random variable attains a value beyond the quantile (VaR) (Taylor (2008)).

5.2 Option-Implied Quantiles

From the fundamental theorems of asset pricing, given a dynamically complete and arbitrage-

free finite economy, the value of a European put option corresponds to the present value of the

expected payoff under the risk-neutral measure (see, e.g. Ross (1976)):

Pt,T = e−rt(T−t)
∫ K

0
(K − ST , 0)+f(ST )dST (8)

20It is worth noticing that this approach does not apply in this paper, being that both quantiles and expectiles
will be inferred non-parametrically from options.
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where rt is the continuously compounded interest rate, (K − ST , 0)+ is the option payoff and

f(ST )dST the risk-neutral density function. Given this economy, and from the seminal papers

of Breeden and Litzenberger (1978) and Banz and Miller (1978), the cumulative distribution

function can be inferred from European option prices by taking the first order derivatives of

the option price with respect to the strike price:

∂Pt,T
∂K

=
∂[e−rt(T−t)

∫K
0 (K − ST , 0)+f(ST )d(ST )]

∂K
(9)

= e−rt(T−t)
∫ K

0
f(ST )dST (10)

= e−rt(T−t)αt,T (11)

With no loss of generality, the same holds using European call options:

∂Ct,T (K)

∂K
=
∂[e−rt(T−t)

∫∞
K (ST −K, 0)+f(ST )d(ST )]

∂K
(12)

= −e−rt(T−t)
∫ ∞
K

f(ST )dST (13)

= −e−rt(T−t)(1− αt,T ) (14)

Since the results above are attained by integrating continuous functions, practical application

with discrete strike distances between price observations demand an approximate solution.

The literature offers many approaches, both parametric and non-parametric, to solve this

problem. Parametric approaches rely on a pricing model and enjoy known partial derivatives. For

example, following the Black and Scholes pricing model the current risk-neutral probability of the

underlying being in-the-money at expiration are N(−d2) = P(ST < K) andN(d2) = P(ST > K)

for put and call option, respectively. Although quick and elegant, the definition of a pricing

function inherently requires an assumption of the underlying price process, and is for this reason

neglected in this paper.21 Alternatively, among the non-parametric approaches, finite differences-

based models enable results without defining a-priori a price-process. Following Barone-Adesi

and Elliott (2007), we propose a finite differences-based scheme that is free of any first-order

error caused by the changes of the implied volatility across strike prices, and that eliminates

the first-order error that arises from the Taylor expansion of the derivative. Formally, for three

consecutive European put option prices Pt,T (Ki+1) > Pt,T (Ki) > Pt,T (Ki−1) with strike prices

21For example, through the proposed Black and Scholes pricing model we would inherently impose log-normality
to our final results.
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Ki+1 > Ki > Ki−1 the finite-difference equivalent of Equation 11 is defined as:

α̂Put
t,T (Ki) = e−rt(T−t)

[
λ

(
Pt,T (Ki+1)− Pt,T (Ki)

Ki+1 −Ki

)
+ (1− λ)

(
Pt,T (Ki)− Pt,T (Ki−1)

Ki −Ki−1

)]
(15)

with λ = (Ki+1−Ki−1)
(Ki−Ki−1) such that λ = 0.5 in presence of equidistant strike prices Ki+1 −Ki =

Ki−Ki−1.22 Similarly to the VIX Index, and to maximize the liquidity of put and call options,

option implied quantiles are computed joining Equations (11) and (14). More precisely, we will

use European put options to compute the portion of α̂t,T whose strike prices are lower than

the current forward value, and European call options to compute the portion of α̂t,T whose

strike prices are higher than the current forward price Figure 6 depicts the time series of the

S&P 500 weekly option-implied quantile curves for the period 2011-2021.

Figure 6: Option-implied quantiles surface: The figure shows the time series of the option-
implied quantiles estimated as described in Section 5. The figure depicts the time-line on the
x-axis, the option-implied quantiles/expectiles on the y-axis and the moneyness defined as K/F
on the z-axis.

The option-implied curve is in green (red) whenever its value is greater (smaller) than 0.5.

The option-implied curve shifts accordingly with the evolution of the S&P 500. For example,

22With no loss of generality, the same scheme can be also applied to European Call options to estimate Equation
(14).

20



the overall uptrend of the market is visible, with some abrupt fall (like in Summer 2018 and

the end/beginning part of 2015/2016). Moreover, comparing Figure 6 with Figure 2 the role of

the quadratic program implemented is now recognizable. In particular, while Figure 6 depicts a

smooth curve with no arbitrage violations, Figure 2 has many irregularities present in different

areas of the curve.

Dropping one dimension, Figure 7 shows the time series of the option-implied quantiles with

the price evolution of the S&P 500 superimposed. The figure depicts in blue the time series of

the S&P 500 index and the entire daily curve of the option-implied quantiles with all values

above (below) the underlying price in green (red).

Figure 7: Option-implied quantiles: The figure shows the time-series of the option-implied
quantile for the weekly options written on the S&P 500 index for the period 2011-2021 with
the S&P 500 index superimposed (in blue). The figure depicts in green (red) all option-implied
quantile values that are above (below) the daily price of the S&P 500 Index.

From the figure it emerges how the time series of option-implied quantiles closely mimics the

underlying, both in calm and in turbulent periods. In particular, during low volatility periods

the dispersion of the daily option-implied quantile values is much smaller compared to more

volatile days, characterized by stronger up or down spikes whenever the market goes up or

down. As mentioned in Section 1, unless in presence of stationary and ergodic market, this

ability of following the market so closely would not be possible using historical data and/or

parametric estimation approaches.
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5.3 Option-Implied Expectiles

Departing from Equation (6) and still assuming a dynamically complete and arbitrage-free

finite economy, the θt,T -expectile is the unique strike price K̄ that solves equation:

θt,TE[(X − eθ(X))+] = (1− θt,T )E[(X − eθ(X))−]

θt,TCt,T (K̄) = (1− θt,T )Pt,T (K̄). (16)

where E[(X − eθ(X))−] and E[(X − eθ(X))+] are the payoff of a European call and put option

with underlying X and strike price eθ(X), respectively. To empirically extract the inverse

option-implied expectile θ̂t,T (Ki) at a generic level Ki, we reorder the above equation such that:

θ̂t,T (Ki) :=
Pt,T (Ki)

Pt,T (Ki) + Ct,T (Ki)
. (17)

Whenever necessary, and to exploit the higher liquidity of European put (call) options for strike

prices lower (greater) than the underlying, we resort to the put-call parity to infer possible

missing prices for a given strike price. More precisely, if for a given day and strike price only the

price of a European put or call option is available, the other price can be determined through

the put-call parity so that the option-implied expectile is estimated from solely European call

options:

θt,T (Ki) =
Ct,T (Ki)− Ste−qt(T−t) +Kie

−rt(T−t)

2Ct,T (Ki)− Ste−qt(T−t) +Kie−rt(T−t)
(18)

or solely from European put options:

θt,T (Ki) =
Pt,T (Ki)

2Pt,T (Ki) + Ste−qt(T−t) −Kie−rt(T−t)
(19)

where qt is the continuously compounded dividend rate. As for the option-implied quantiles,

also this method is fully non-parametric and data driven. Figure 8 depicts the time series of

the S&P 500 weekly option-implied expectile curves estimated with Equation 17.
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Figure 8: Option-implied expectiles surface: The figure shows the time series of the option-
implied expectiles estimated as described in Section 5. The figure depicts the time-line on the
x-axis, the option-implied quantiles/expectiles on the y-axis and the moneyness defined a K/F
on the z-axis.

As expected, the option-implied expectile curve is both similar to the option-implied quantile

curve and less noisy, above all into the tails of the distribution. This is a direct consequence of the

two different estimation methods, the one used to estimate option-implied expectiles being less

numerically intensive than the one used for quantiles. Figure 9 shows the two-dimensional time

series of the option-implied expectiles with the price evolution of the S&P 500 superimposed,

and confirms both the ability of the time series to track the underlying and the lower amount

of noise, once compared with the option-implied quantile time series.
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Figure 9: Option-implied expectiles: The figure shows the time-series of the option-implied
expectile for the weekly options written on the S&P 500 index for the period 2011-2021 with
the S&P 500 index superimposed (in blue). The figure depicts in green (red) all option-implied
expectile values that are above (below) the daily price of the S&P 500 Index.

5.4 Monte Carlo experiment

Having defined option-implied quantiles and expectiles, we now propose a further validation test

to compare the BIRS approach with the PCA and FS models presented in Section 4. While in

Section 4.1 we compared the BIRS approach with the PCA and FS ones using real market data,

in this Section we compare it using simulated data through a Monte Carlo experiment. The

rationale behind the experiment is to check the capability of the models to recover a quantity

knowing the parametric form of the quantity itself. For the experiment, we follow Bondarenko

(2003) and test the validity of the proposed pricing models during days with high and low

volatility. A high (low) volatility day in our sample corresponds to a VIX value above (below)

its historical average. To infer the risk-neutral distribution, we depart from the observed weekly

option prices on the specific date and we calibrate a mixture of three log-normal distributions.

Mean Std Weight

LN1 7.14 0.04 0.33
LN2 7.16 0.02 0.26
LN3 7.17 0.02 0.41

Table 4: High VIX day log-normal parameter estimates: The table summarizes the
results of the fitted mixture of log-normal model with three log-normals. LN1, LN2 and LN3
represent the specific log-normal distribution used. The parameter represent a day in the sample
when the VIX was above its historical average.
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In order to estimate the parameter of the mixtures of log-normal distributions, we rely on the

Nelder-Mead algorithm. To initialize the algorithm, we set the starting value for the mean,

µinitial guess, equal to the natural logarithm of the current spot S&P 500 level on the specific

date. The initial values for the standard deviation are set to σinitial guess = [0.03, 0.05, 0.3].

Based on the estimated parameter, we generate an artificial set of European call and put

options, corresponding to the available strike prices on the specific date. To include possible

option market microstructures, such as a the bid/ask spreads, we test the performance of each

method under two noise specifications. First, as a starting point, we follow Rompolis (2010)

and add to the generated option prices a uniformly distributed noise term between -0.025 and

0.025. Secondly, to account for the different liquidity that an option can have depending on its

moneyness (which results in higher bid/ask spreads), we follow Aıt-Sahalia and Duarte (2003)

and add to the generated option prices a noisy term that varies with the option moneyness equal

to 0.5×(Priceask−Pricebid)×Liquidity factor where Liquidity factor = 1+

(
2

0.2

)
∗
∣∣∣∣(KFt − 1

)∣∣∣∣
and Ft represents today’s forward value. Finally, we evaluate each method based on the root

mean integrated squared error (RMISE), and split this error measure up into two parts, the

root integrated squared bias (RISB), referred to as ‘bias‘, and the root integrated variance

(RIV), referred to as ‘variability‘, which allows us to examine the stability and accuracy of each

method separately (Bondarenko (2003)):

RMISE =
1√∫
f(x)2dx

√
E

[∫
(f̂(x)− f(x))2dx

]

RISB =
1√∫
f(x)2dx

√∫
(E[f̂(x)]− f(x))2dx (20)

RIV =
1√∫
f(x)2dx

√∫
(E[(f̂(x)− E[f̂(x)])2]dx

while

RMISE2 = RISB2 + RIV2

Table 5 summarizes the results for a random day in which the VIX was above its historical

average.
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BIRS Jackwerth (2004) Bondarenko (2003)

LN 3 QAlpha EAlpha QAlpha EAlpha QAlpha EAlpha

No noise

RMISE 1.1341 0.9806 1.0069 1.1365 1.1590 1.2746 1.2930

Bias 0.8019 0.8061 0.8078 0.8205 0.8225 0.8334 0.8339

Variability 0.8019 0.5585 0.6010 0.7864 0.8165 0.9645 0.9882

Uniform noise

RMISE 1.1341 0.9807 1.0069 1.1363 1.1589 1.2746 1.2930

Bias 0.8019 0.8060 0.8078 0.8205 0.8225 0.8334 0.8339

Variability 0.8019 0.5586 0.6011 0.7860 0.8164 0.9644 0.9882

Moneyness noise

RMISE 1.1341 0.9801 1.0062 1.1357 1.1582 1.2739 1.2923

Bias 0.8019 0.8061 0.8079 0.8205 0.8226 0.8334 0.8340

Variability 0.8019 0.5576 0.5997 0.7851 0.8154 0.9635 0.9871

Table 5: High VIX: The table summarizes the root mean integrated squared error (RMISE).
‘Bias‘ refers to the root integrated squared bias and ‘Variability‘ to the root integrated variance
as calculated in equation 20. The ‘Uniform noise‘ specification refers to the case when we
added uniformely distributed noise terms between [-0.025, 0.025] to the artificial generated
option prices as in Rompolis (2010). The results for the category ‘Moneyness noise‘ specify the
case where the noise term for deeper out-of-the money options increases as in Aıt-Sahalia and
Duarte (2003).

Examining the RMISE across the different methods, we infer that the BIRS approach has

a lower RMISE, once compared with the PCA and the FS, respectively, both the uniform

and the moneyness noises. It is noteworthy to see that increasing the complexity of the noise

specification does not necessarily lead to a higher RMISE for the BIRS.23

5.5 Constructing option-implied quantile and expectile based measures

As a follow-up to Figures 6, 8, 7 and 9, we further investigate if the estimated option-implied

quantiles or option-implied expectiles have some forecasting power. For the regression analysis,

the vectors of option-implied quantiles and expectiles for each weekly option chain are com-

pressed to descriptive statistics that highlight the attributes of the price densities. We therefore

use the ranges between the option-implied quantiles or option-implied expectiles of certain

orders as a robust descriptive statistics of the variability of the estimated distributions.

Specifically for α, θ > 1/2, we define a robust and conditional Quantile Dispersion (QD)

23Low VIX days confirm the superiority of the model, once compared with the PCA and FS approaches. Results
are presented in the On-line appendix.
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indicators and Expectile Dispersion (ED) indicators as:

QDt,T = q̂αt,T − q̂1−α
t,T (21)

EDt,T = êθt,T − ê1−θ
t,T (22)

and we set the confidence intervals α and θ equal to 75%, 90%, and 95%, them being the

most commonly investigated.24 To bypass the arbitrary choice of how to set the confidence

intervals, we propose the integrated versions of the above indicators, which summarize the

entire information for all α and θ:

QD
∫ 1
0.5
t,T =

∫ 1

0.5
(q̂αt,T − q̂1−α

t,T )dα (23)

ED
∫ 1
0.5
t,T =

∫ 1

0.5
(êθt,T − ê1−θ

t,T )dθ. (24)

Being defined as the difference between two quantiles (or expectiles), these dispersion indicators

are alternative measures of market variability.

Following Hinkley (1975) and Ghysels et al. (2016), we then propose a robust alternative

to the third moment. Formally, we define the robust option-implied coefficient of quantile

asymmetry (CA) and expectile asymmetry (EA) as:

QAt,T =
[qαt,T − q0.5

t,T ]− [q0.5
t,T − q

1−α
t,T ]

[qαt,T − q
1−α
t,T ]

for α ∈ (0.5, 1) (25)

EAt,T =
[eθt,T − e0.5

t,T ]− [e0.5
t,T − e

1−θ
t,T ]

[eθt,T − e
1−θ
t,T ]

for θ ∈ (0.5, 1) (26)

Again, we evaluate the QA and EA, setting the confidence levels at 0.75, 0.9, and 0.95 where,

for a confidence level equal to 0.75, we retrieve the Bowley (1920) statistic. Once more to avoid

the arbitrary choice of setting the confidence sets, we propose the integrated version of the QA

and EA:

QA
∫ 1
0.5
t,T =

∫ 1
0.5[(qαt,T − q0.5

t,T )− (q0.5
t,T − q

1−α
t,T )]dα∫ 1

0.5[qαt,T − q
1−α
t,T ]dα

for α ∈ (0.5, 1) (27)

EA
∫ 1
0.5
t,T =

∫ 1
0.5[(qθt,T − q0.5

t,T − q0.5
t,T − q

1−θ
t,T )]dθ∫ 1

0.5[qθt,T − q
1−θ
t,T ]dθ

for θ ∈ (0.5, 1) (28)

By construction, the above measures are bounded between -1 and 1, revolve around the median

and indicate negative (positive) asymmetry whenever they are below (above) 0, while being

24Being strike prices not in a continuum, each range is estimated using the strike prices closest to each bound.
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different than the third moment of returns. As emphasized in Ghysels et al. (2016), these

asymmetry indicators are robust to outliers and can be computed at various time horizons.

Differently from Ghysels et al. (2016), our measures are short-term option-implied coefficients of

asymmetry, instead of long-term stock-based coefficients of asymmetry. As such, our measures

are based upon forward-looking information, rather than constructing the forecast on historical

return data.

Finally, as a proxy for the fourth moment, we follow Ruppert (1987) and Ammann and Feser

(2019) and propose a robust and conditional measure of quantile flatness (QF) and expectile

flatness (EF):

QFt,T =
[qαt,T − q

1−α
t,T ]

[qωt,T − q
1−ω
t,T ]

for α ∈ (0.75, 1) and ω = 0.7 (29)

EFt,T =
[eθt,T − e

1−θ
t,T ]

[eωt,T − e
1−ω
t,T ]

for θ ∈ (0.75, 1) and ω = 0.7 (30)

where we select as starting point the value of the tail ω = 0.7 and again select 0.75, 0.9 and

0.95 as the confidence interval. Again, and to avoid an arbitrary choice for the confidence, we

also calculate an alternative more generic version that considers the entire distribution:

QF
∫ 1
0.75
t,T =

∫ 1
0.5[qαt,T − q

1−α
t,T ]dα

[qωt,T − q
1−ω
t,T ]

for α ∈ (0.75, 1) and ω = 0.7 (31)

EF
∫ 1
0.75
t,T =

∫ 1
0.75[eθt,T − e

1−θ
t,T ]dθ

[eωt,T − e
1−ω
t,T ]

for θ ∈ (0.75, 1) and ω = 0.7 (32)

The summary statistics of all calculated option-implied robust measures are collected in Table 6

while the BIRS time series are depicted in Figure 10.25

25The time series of the PCA and FS approach are in the Online Appendix.
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mean std min 25% 50% 75% max

QD(0.75) 0.02 0.02 0.01 0.01 0.02 0.03 0.15

QD(0.9) 0.05 0.03 0.01 0.03 0.04 0.06 0.25

QD(0.95) 0.06 0.04 0.02 0.04 0.06 0.07 0.31

QD(Integral) 0.02 0.01 0.01 0.01 0.01 0.02 0.08

QA(0.75) -0.10 0.28 -0.91 -0.29 -0.11 0.05 0.81

QA(0.9) -0.21 0.15 -0.66 -0.31 -0.22 -0.11 0.34

QA(0.95) -0.26 0.12 -0.69 -0.35 -0.27 -0.18 0.12

QA(Integral) -0.19 0.17 -0.61 -0.31 -0.21 -0.08 0.27

QF(0.75) 1.37 0.31 1.00 1.18 1.31 1.47 3.21

QF(0.9) 2.83 0.71 1.69 2.44 2.66 2.95 9.21

QF(0.95) 3.83 1.02 2.29 3.25 3.54 4.05 11.91

QF(Integral) 0.67 0.17 0.42 0.57 0.62 0.70 1.91

ED(0.75) 0.02 0.01 0.01 0.01 0.01 0.02 0.10

ED(0.9) 0.04 0.02 0.01 0.02 0.03 0.04 0.20

ED(0.95) 0.05 0.03 0.02 0.03 0.04 0.05 0.24

ED(Integral) 0.01 0.01 0.00 0.01 0.01 0.01 0.06

EA(0.75) -0.09 0.05 -0.29 -0.12 -0.09 -0.05 0.09

EA(0.9) -0.16 0.05 -0.38 -0.20 -0.16 -0.13 -0.01

EA(0.95) -0.21 0.06 -0.42 -0.25 -0.21 -0.17 -0.06

EA(Integral) -0.18 0.05 -0.36 -0.21 -0.17 -0.14 -0.03

EF(0.75) 1.30 0.04 1.17 1.28 1.30 1.32 1.42

EF(0.9) 2.66 0.09 2.42 2.61 2.65 2.72 3.01

EF(0.95) 3.67 0.18 3.09 3.54 3.64 3.80 4.38

EF(Integral) 0.65 0.04 0.53 0.62 0.64 0.67 0.80

Table 6: Summary statistics BIRS: The table provides summary statistics of the option
implied measures.
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Figure 10: Time series of the BIRS-based robust option-implied measures: The figure
illustrates the time series of the four robust option-implied measures. The figure depict vertically
the robust option-implied measures of conditional dispersion (left), asymmetry (center), and
flatness (right) and horizontally considering four different confidence intervals, 0.75, 0.9, 0.95
and Integral, respectively.

From both the tables and the figures it emerges the higher numerical stability of the expectile-

based robust measures and of those quantities that are closer to the center of the distribution.

As summarized by the min, max and mean values as well as by all intervals and coherent with

equation (7), quantile-based indicators are always larger than expectile-based ones. Once more,

the higher stability of the the option-implied expectiles once compared with the option-implied

quantiles, reflect the different estimation approaches.26 The higher stability of the indicators

that are closer to the center of the distribution, reflects the higher presence of option market

data at the main part of the distribution. Moving away from the center reflects the scarcity of

26As mentioned in Section 5 option-implied quantiles are in fact estimated with three contiguous prices, while
option-implied expectiles only need two points in estimation.
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the data in the tails and the resulting lower stability of the indicator.

After the estimation of the robust option-implied quantities, our subsequent goal of our in-

vestigation is to analyze if these robust indicators (QD, ED, QD
∫ 1
0.5 , ED

∫ 1
0.5 QA, EA, QA

∫ 1
0.5 ,

EA
∫ 1
0.5 and finally QF, EF and QF

∫ 1
0.5 and EF

∫ 1
0.5) have some forecasting power. More gener-

ally, we investigate the economic gains from exploiting option-implied dispersion, asymmetry

and flatness in the distribution of returns at short, medium and long time period. It is worth

noticing that to promote stability and stationarity, the option-implied quantile curve and the

option-implied expectile curves are computed as their implied deviations from the forward

price: RCSt,t+τ = log

(
SCSt,t+τ
Sf

)
, where SCSt,t+τ is the index price at time t + 1 at a confidence

set (CS) determined by α or τ for quantiles and expectiles, and Sf is the forward price of

the index. For example, to estimate the QD at a given level α we consider, not the difference

in dollar value of the index at the level α and 1−α, but its return difference at level α and 1−α.

To benchmark the performances of our option-implied indicators, the same analysis is also

repeated with the same indicators, but this time inferred from historical returns. More precisely,

we estimate again the aforementioned indicators using realized quantiles inferred from a 30

days rolling window of past historical returns, in order to be used as a benchmark model in

computing out-of-sample R2s (Campbell and Thompson (2007)).27 The null hypothesis of this

study is that the forward-looking information of risk-neutral quantities derived from options

can not predict future returns. To test this hypothesis, QD, ED, QA, EA, EF, and QF, are

used as regressors X for predicting rAt,t+τ , the τ -days ahead log-return adjusted for the risk-free

interest rate. The analysis is first performed in-sample through a simple linear regression fitted

to each feature, X, with rAt+τ as dependent variable:

r̂At,t+τ = α+ βXt + εt+τ (33)

For each factor we evaluate its in-sample performance (R2), slope β for a short (τ = 7 days),

medium (τ = 60 days) and long (τ = 180 days) time horizon. Moreover, following (Campbell

and Thompson (2007)), we compare the obtained results with a similar exercise using historical

data to compute the measures of asymmetry:

R2
OS = 1−

∑T
t=1(rt − r̂(t−w,t))

2∑T
t=1(rt − r̃(t−w,t))2

(34)

27The same analysis has also been performed for the expectile equivalent of the same indicators (ED, ED
∫ 1
0.5 ,

ECA and ECA
∫ 1
0.5). Due to the similarity in the final results and to save space, results are not reported but are

available upon request to the authors.
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where r̂(t−w,t) is estimated with Equation 33 using the forward-looking measures of asymmetry

between t−w and time t, where w is set at 36 weeks, and r̃ is estimated similarly using historical

data.28 The comparison of these two quantities gives rise to a benchmark-adjusted R2
OS . For

positive values of R2
OOS , the proposed model, r̂(t−w,t), is performing better than the benchmark

using historical data, r̃, and vice versa for negative values.

Finally, we test if our option-implied indicators have some forecasting power in predicting future

volatility, skewness, and kurtosis, at short, medium and long-term horizon through a univariate

regression:

σ̂2
t,t+τ = α+ βXt + εt,t+τ (35)

Ŝ[rt,t+k] = α+ βXt + εt,t+τ (36)

K̂[rt,t+k] = α+ βXt + εt,t+τ (37)

To account for potential time-series correlation caused by the overlapping observations in

computing compounded moments, we estimate Newey-West standard errors (Newey and West

(1987)) with lags equal to the number of weeks between observations. Finally we estimate the

same specifications but using a quantile-regression instead of a standard linear model in order

to estimate the median instead of the conditional average.

6 Forecasting exercise

In this section we discuss our main findings related to the predictive power of the robust option-

implied measures presented in Section 5.5 with respect to risk premium, volatility, and higher

realized moments.29 Tables 7 and 8 present the results of regressing the option-implied measures

on realized returns, volatility, skewness and kurtosis. We provide 54 specifications for estimating

each one of the realized moments, varying the probability α in the quantiles and expectiles, as

well as the horizon in the prediction. We vary the parameter α between 0.75 and 0.95 to study

how the predictive power changes as we approach the tails of the distribution, and we vary the

forecast horizon between one week and 26 weeks to study the short-, medium- and long-run

forecast power. Finally, since the realized moments of the distribution are likely to contain

extreme values in short horizons, in Tables 9 and 10 we repeat the analysis using quantile

28To lighten the notation for the out-of-sample analysis, we drop the time orientation t,t+τ . Nevertheless, the
analysis is again performed for the short, medium and long time horizon.
29For reason of space and to facilitate the reading of the analysis we only present the findings related to the
approach presented in this paper, and compare it with historical-based benchmarks. Nevertheless, it is worth
noticing that the entire empirical analysis has been performed also for the PCA and FS approaches presented
in Section 4 and are available upon request from the authors. Results have been omitted because the PCA and
FS approaches produces among them overall very similar results, but always inferior to the ones generated with
the approach presented in this paper, thus confirming Sections 4.1 and 5.4.
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regressions to estimate the median value of the conditional distribution. We find that the

option-implied indicators of dispersion, QD and ED, have the highest predictive power on the

realized moments. Moreover, these measures are more robust across the different specifications.

We concentrate our discussion of the results mostly on these two measures during the remaining

of the section. The other robust measures, QA, EA, QF and EF show small or zero forecasting

power, thus confirming the absence of time-series forecasting power of the implied high moments,

also for weekly options.

Table 7 shows that, QD and ED, the robust option-implied measures of dispersion, predict

expected returns for horizons of 9 and 26 weeks, and that QD exhibits short term predictability

for an α of 0.75. Consistent with the literature on return predictability (e.g. Cochrane (2008)),

the magnitude of the point estimates, t-statistics, and in-sample R2s increase with the time

horizon. Point estimates are statistically significant at the 1% level for horizons of 9 and 26

weeks. Point estimates and in-sample R2s decrease as we approach the tails of the distribution,

which suggests that the predictive power of the measures of asymmetry is reduced when we

take into account observations in the tails of the distribution.

Our results are also economically significant and, as expected, improve at short-time. Specif-

ically, for short horizons, taking the α = 0.75 specification as benchmark, a one standard

deviation (0.02) increase in the QD measure, is related to an increase of 0.5% (4.6%) in average

market returns over one (26) week(s). Using the ED measure, we find that the same increase of

a one standard deviation (0.01) for an α = 0.75 is related to an increase of (3.43%) in expected

returns over horizons of one (26) week(s). The specifications using 26 weeks as horizons provide

positive out-of-sample R2s when using historical measures of asymmetry as a benchmark vary-

ing between 12 and 16 percent.We find that the robust measures of asymmetry and flatness do

not predict expected returns or volatility in our sample.
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Table 7: Linear Predictive Model

yt,t+k = a+ bxt + εt,t+k
yt,t+k E[rt,t+k] σ[rt,t+k]

k 1w 9w 26w 1w 9w 26w

xt α b/t(b) R2 R2
oos b/t(b) R2 R2

oos b/t(b) R2 R2
oos b/t(b) R2 R2

oos b/t(b) R2 R2
oos b/t(b) R2 R2

oos

QD

0.75
0.25**

2.63 -2.65
1.1***

9.79 -2.91
2.29***

22.57 14.91
0.33***

43.72 36.52
0.19***

20.63 14.22
0.07***

3.82 1.81
(2.2) (5.06) (7.04) (9.41) (7.85) (2.6)

0.9
0.03

-0.03 -5.36
0.52***

8.21 -4.77
1.2***

23.33 15.35
0.2***

56.9 50.71
0.11***

25.91 19.43
0.04***

5.76 3.12
(0.36) (4.37) (7.03) (7.79) (7.9) (3.26)

0.95
0.02

-0.11 0.12
0.4***

7.67 -5.96
0.94***

23.2 12.3
0.15***

56.15 47.38
0.09***

26.15 19.3
0.03***

5.81 3.09
(0.27) (4.18) (6.75) (7.38) (7.19) (3.2)

ED

0.75
0.13

0.16 -10.03
1.53***

8.65 -3.92
3.43***

23.39 16.07
0.56***

56.69 52.09
0.31***

25.07 19.15
0.12***

5.54 3.13
(0.53) (4.71) (7.32) (7.88) (8.16) (3.22)

0.9
0.06

0.11 -7.34
0.76***

8.43 -4.74
1.72***

23.24 16.14
0.28***

56.89 50.05
0.15***

25.2 17.53
0.06***

5.67 2.91
(0.5) (4.58) (7.11) (7.92) (8.18) (3.26)

0.95
0.04

0.04 -1.52
0.57***

8.09 -5.56
1.3***

22.7 12.72
0.21***

56.54 47.36
0.12***

25.21 17.15
0.05***

5.69 2.65
(0.44) (4.4) (6.62) (7.71) (7.63) (3.16)

QA

0.75
-0.0

-0.22 -0.34
0.01

0.03 -6.07
0.01

-0.1 2.03
0.0

-0.2 -3.19
0.0

-0.22 -1.19
0.0

0.04 0.42
(-0.12) (1.26) (0.81) (0.25) (0.02) (1.15)

0.9
0.01

0.35 -0.35
0.03

0.42 -1.93
0.0

-0.21 0.08
-0.01

1.63 -7.63
-0.0

1.1 -5.73
-0.0

-0.16 -0.09
(0.94) (1.48) (0.14) (-1.52) (-1.1) (-0.41)

0.95
0.02

0.75 -2.18
0.04

0.61 -1.2
0.02

-0.16 -1.95
-0.01*

2.57 -4.05
-0.01

1.73 -1.59
-0.0

0.53 -10.75
(1.08) (1.38) (0.46) (-1.71) (-1.32) (-1.51)

EA

0.75
0.05

0.92 -0.61
0.07

0.17 -5.91
-0.01

-0.22 2.56
-0.02*

1.71 -2.29
-0.01

0.59 -1.89
-0.01

0.09 0.37
(1.46) (1.38) (-0.08) (-1.71) (-1.0) (-0.98)

0.9
0.04

0.58 0.34
0.08

0.4 -2.5
0.06

-0.07 0.08
-0.03**

3.47 -8.13
-0.02

1.27 -8.71
-0.01

1.52 -1.21
(1.1) (1.32) (0.59) (-2.03) (-1.06) (-1.55)

0.95
0.04

0.68 -1.17
0.09

0.72 -2.18
0.12

0.68 -1.2
-0.02*

1.97 -5.37
-0.01

0.63 -4.63
-0.01*

1.59 -12.76
(1.22) (1.55) (1.43) (-1.81) (-0.96) (-1.68)

QF

0.75
-0.0

-0.22 0.02
-0.0

-0.14 -0.21
-0.01**

0.09 0.31
-0.0

0.07 1.3
-0.0

-0.18 0.31
0.0

-0.21 -0.26
(-0.02) (-0.82) (-1.99) (-1.21) (-0.72) (0.35)

0.9
-0.01

3.19 -0.97
-0.0

0.1 -0.9
-0.0

0.0 1.61
0.0

0.46 -3.42
0.0

-0.06 0.34
0.0

0.48 1.72
(-1.49) (-1.48) (-1.17) (0.61) (0.57) (1.47)

0.95
-0.0

2.82 2.43
-0.0*

0.39 -3.41
-0.01**

0.31 1.07
0.0

-0.15 -13.87
0.0

-0.21 0.87
0.0

0.34 0.63
(-1.49) (-1.84) (-2.14) (0.21) (0.14) (1.13)

EF

0.75
-0.03

-0.0 0.6
0.03

-0.19 -0.47
0.03

-0.2 0.03
0.01

-0.14 0.35
-0.0

-0.2 0.05
-0.0

-0.22 0.33
(-1.04) (0.39) (0.32) (0.91) (-0.29) (-0.13)

0.9
-0.03**

0.8 1.43
-0.05

0.44 -1.28
-0.1

1.29 1.69
-0.02***

3.06 7.68
-0.01**

2.16 8.21
-0.0

-0.2 1.8
(-2.16) (-1.57) (-1.51) (-3.59) (-1.99) (-0.22)

0.95
-0.01**

0.9 3.39
-0.04*

1.39 -4.31
-0.08**

4.34 0.85
-0.01***

8.47 2.97
-0.01**

5.06 12.55
-0.0

0.03 1.99
(-2.04) (-1.92) (-1.99) (-4.01) (-2.25) (-0.72)
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Table 8: Linear Predictive Model

yt,t+k = a+ bxt + εt,t+k
yt,t+k S[rt,t+k] K[rt,t+k]

k 1w 9w 26w 1w 9w 26w

xt α b/t(b) R2 R2
oos b/t(b) R2 R2

oos b/t(b) R2 R2
oos b/t(b) R2 R2

oos b/t(b) R2 R2
oos b/t(b) R2 R2

oos

QD

0.75
-0.3

-0.21 -0.21
4.98

1.32 -2.64
7.23*

4.35 6.27
-2.38**

0.69 1.93
-6.51

0.24 -6.6
-11.13

0.39 0.61
(-0.23) (1.54) (1.68) (-2.36) (-0.78) (-0.7)

0.9
-0.35

-0.18 0.15
1.89

0.62 1.31
3.11

2.98 4.48
-1.26**

0.75 1.16
-2.98

0.14 -5.77
-3.01

-0.05 0.93
(-0.53) (1.13) (1.33) (-2.5) (-0.65) (-0.33)

0.95
-0.34

-0.16 0.39
1.43

0.56 0.36
2.44

2.94 2.28
-0.95**

0.67 1.05
-2.5

0.19 -6.75
-2.82

0.02 -0.33
(-0.64) (1.07) (1.31) (-2.33) (-0.68) (-0.39)

ED

0.75
-1.18

-0.16 -0.09
6.02

0.83 -2.84
9.57

3.5 5.89
-3.57**

0.74 1.72
-9.35

0.22 -6.65
-10.08

0.01 0.45
(-0.62) (1.3) (1.45) (-2.53) (-0.73) (-0.38)

0.9
-0.67

-0.15 0.21
2.91

0.74 1.36
4.76

3.39 5.08
-1.82**

0.75 1.26
-4.95

0.26 -5.93
-5.51

0.05 0.99
(-0.69) (1.25) (1.45) (-2.55) (-0.75) (-0.41)

0.95
-0.6

-0.12 0.46
2.15

0.68 0.45
3.61

3.34 2.64
-1.38**

0.75 1.27
-4.09

0.35 -6.79
-4.89

0.15 -0.23
(-0.8) (1.2) (1.44) (-2.49) (-0.8) (-0.48)

QA

0.75
0.04

-0.17 -0.74
-0.02

-0.21 0.13
0.14**

0.4 1.27
-0.08

0.1 -2.05
-0.04

-0.21 -0.59
-0.26

-0.11 -3.5
(0.47) (-0.2) (2.2) (-1.19) (-0.17) (-0.92)

0.9
0.14

-0.06 -0.69
0.09

-0.17 2.21
0.3

0.49 1.62
-0.14

0.07 -1.0
-0.01

-0.22 -2.32
-1.25

0.49 2.88
(0.83) (0.43) (1.6) (-1.21) (-0.01) (-1.54)

0.95
0.14

-0.11 2.0
0.15

-0.13 2.5
0.29

0.26 -1.36
-0.14

-0.0 -0.17
0.36

-0.13 -9.06
-1.41

0.41 -1.26
(0.69) (0.52) (1.15) (-0.99) (0.6) (-1.5)

EA

0.75
0.42

-0.07 -1.06
0.44

-0.1 0.45
1.32*

1.32 1.32
-0.48

0.15 -0.42
0.65

-0.17 -0.43
-5.19

1.12 -1.64
(0.88) (0.58) (1.81) (-1.35) (0.42) (-1.56)

0.9
0.82*

0.41 -0.76
1.0

0.46 2.47
1.3

1.39 1.05
-0.37

0.02 -0.53
1.61

0.09 -1.58
-5.41

1.36 3.67
(1.8) (1.16) (1.43) (-1.06) (0.92) (-1.23)

0.95
0.83**

0.69 2.24
0.98

0.7 1.96
0.92

0.93 -2.15
-0.25

-0.07 0.05
1.94

0.41 -7.77
-3.35

0.64 -1.03
(2.12) (1.29) (1.11) (-0.83) (1.3) (-0.85)

QF

0.75
0.0

-0.22 -0.83
-0.01

-0.22 -0.17
-0.08

0.03 1.1
-0.05

-0.06 -0.49
-0.45**

0.68 1.49
-0.21

-0.13 2.52
(0.02) (-0.09) (-1.35) (-0.83) (-2.09) (-1.0)

0.9
-0.02

-0.14 0.09
-0.05

0.17 -0.95
-0.09***

1.42 7.97
-0.03

0.06 0.95
-0.15

0.33 -1.2
0.22

0.3 -8.3
(-0.75) (-1.19) (-3.06) (-1.12) (-1.44) (1.58)

0.95
-0.01

-0.17 0.33
-0.03

0.11 -2.75
-0.07***

1.67 8.44
-0.01

-0.09 1.03
-0.1

0.29 0.13
0.17

0.39 -8.53
(-0.55) (-0.95) (-2.75) (-0.8) (-1.39) (1.59)

EF

0.75
0.46

-0.12 -1.19
0.54

-0.12 0.23
1.17***

0.45 2.02
-0.48

-0.01 -0.68
-4.32**

0.9 1.19
-4.39***

0.31 3.05
(0.67) (0.76) (3.48) (-0.98) (-2.46) (-3.33)

0.9
-0.0

-0.22 0.33
-0.28

-0.05 -0.07
-0.48

0.48 8.79
-0.15

-0.09 0.29
-1.78*

0.97 -0.18
-0.66

-0.15 -6.16
(-0.01) (-0.62) (-1.04) (-0.81) (-1.75) (-0.34)

0.95
-0.08

-0.15 0.22
-0.23

0.24 -2.5
-0.4

1.84 10.35
-0.01

-0.22 0.37
-0.77

0.72 0.64
-0.22

-0.18 -5.91
(-0.57) (-0.86) (-1.45) (-0.07) (-1.49) (-0.2)
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Inference using linear regression models can be misleading if residuals are not spherical. We

repeat our analysis, using quantile regressions in which the right hand side variables provide

variation in the estimated conditional median of the distribution, rather than the conditional

mean. Table 9 shows the results of estimating the median realized returns for the same set of

horizons discussed above. We confirm that the measures of asymmetry QD and ED predict me-

dian returns for all horizons up to 26 weeks, and that all results are once more both economically

and statistically significant at the 1% level. Consistent with the results obtained in predicting

average returns, point estimates, t-statistics, and in sample R2s increase with the time horizon.

However point estimates are significant at the 1% level across all specifications. This suggests

that our measures of dispersion have a better performance in capturing the variation of the

median of these moments both for short and long horizons. The same one standard deviation

increase (0.02) for an α = 0.75 for QD is related to an increase in the median return of 0.66%

(one week), 1.8% (nine weeks) and 3.2% (26 weeks). For ED, this increase (0.01) is related to an

increase of 0.46% (one week), 1.82 (nine weeks) and 3.08% (26 weeks) respectively. Moreover,

we find that using a quantile specification out-of-sample R2s are positive for horizons of 26

weeks suggesting that the robust option-implied measures of asymmetry QD and ED better

predict average and median market returns.
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Table 9: Quantile Predictive Model

yt,t+k = a+ bxt + εt,t+k
yt,t+k E[rt,t+k] σ[rt,t+k]

k 1w 9w 26w 1w 9w 26w

xt α b/t(b) R2 R2
oos b/t(b) R2 R2

oos b/t(b) R2 R2
oos b/t(b) R2 R2

oos b/t(b) R2 R2
oos b/t(b) R2 R2

oos

QD

0.75
0.33***

2.14 -2.57
1.26***

7.43 -3.81
2.19***

10.37 13.53
0.31***

28.37 39.21
0.18***

16.29 21.04
0.08***

5.02 3.16
(5.47) (8.83) (9.98) (27.58) (18.71) (9.34)

0.9
0.15***

1.37 -4.55
0.62***

6.66 -4.61
1.08***

10.8 17.59
0.17***

30.12 50.18
0.1***

19.33 24.76
0.05***

6.79 5.3
(4.93) (8.58) (9.54) (28.24) (21.13) (11.72)

0.95
0.11***

1.2 -3.78
0.47***

6.41 -5.49
0.82***

10.78 13.13
0.13***

29.55 45.17
0.08***

18.96 23.13
0.04***

6.52 5.62
(4.49) (8.29) (9.18) (28.36) (21.03) (10.04)

ED

0.75
0.46***

1.34 -5.38
1.82***

6.83 -3.81
3.08***

10.99 14.73
0.5***

30.47 54.24
0.29***

18.77 24.39
0.13***

6.66 4.68
(5.09) (8.92) (9.62) (30.23) (21.76) (10.27)

0.9
0.21***

1.23 -4.05
0.91***

6.59 -4.14
1.58***

10.92 18.82
0.24***

30.37 52.64
0.15***

18.98 22.51
0.07***

6.86 5.87
(4.71) (8.83) (9.77) (29.0) (21.76) (10.32)

0.95
0.13***

1.06 -2.04
0.69***

6.27 -5.04
1.18***

10.66 13.34
0.18***

30.02 47.08
0.11***

19.2 21.16
0.05***

6.95 6.14
(3.76) (8.77) (9.49) (28.46) (20.55) (11.31)

QA

0.75
0.0

0.01 0.19
-0.0

0.0 -4.42
0.02

0.25 3.62
0.0

0.04 -0.06
0.0**

0.44 -0.54
0.0

0.0 -1.13
(0.25) (-0.0) (1.36) (0.23) (2.23) (0.08)

0.9
0.0

0.0 0.16
-0.0

0.01 -0.81
0.0

0.0 -2.18
-0.0

0.12 -4.57
0.0

0.0 -4.52
-0.0

0.15 4.74
(0.07) (-0.15) (0.03) (-0.75) (0.26) (-1.18)

0.95
0.0

0.03 -0.1
-0.01

0.06 -0.89
0.0

0.0 -4.46
-0.0**

0.72 -1.28
0.0

0.0 0.22
-0.0*

0.39 0.28
(0.55) (-0.63) (0.08) (-2.26) (0.35) (-1.85)

EA

0.75
0.03*

0.33 1.06
-0.02

0.02 -4.42
0.03

0.01 4.51
-0.01**

0.81 1.09
0.01

0.12 -2.16
-0.0

0.17 -1.65
(1.67) (-0.35) (0.38) (-2.56) (1.42) (-1.31)

0.9
0.02

0.26 1.93
-0.02

0.03 -0.8
0.0

0.0 -0.96
-0.01***

1.03 -3.34
0.0

0.01 -5.11
-0.01**

0.7 4.08
(1.24) (-0.45) (0.07) (-2.81) (0.24) (-2.1)

0.95
0.02

0.29 1.82
0.01

0.01 -0.34
0.03

0.04 -3.47
-0.01**

0.96 -2.26
-0.0

0.0 -0.27
-0.01***

0.86 0.84
(1.35) (0.17) (0.6) (-2.59) (-0.35) (-2.62)

QF

0.75
0.0

0.19 -1.34
0.0

0.0 -0.57
-0.0

0.07 -2.11
-0.0

0.11 0.41
0.0

0.0 -0.22
0.0

0.03 0.05
(1.32) (0.04) (-0.45) (-0.98) (0.54) (0.44)

0.9
-0.0

0.12 -1.74
0.0

0.01 -3.26
-0.01**

0.19 -1.83
-0.0*

0.36 0.85
-0.0

0.01 0.09
0.0*

0.27 0.52
(-1.34) (0.34) (-2.07) (-1.65) (-0.12) (1.85)

0.95
-0.0

0.18 1.24
0.0

0.0 -5.33
-0.01*

0.25 4.23
-0.0***

0.82 -1.38
-0.0*

0.22 4.08
0.0

0.18 0.04
(-1.44) (0.02) (-1.88) (-3.23) (-1.96) (1.15)

EF

0.75
-0.0

0.0 -0.89
0.06

0.12 -1.03
0.06

0.06 -2.5
0.0

0.08 -0.06
0.0

0.04 -0.08
-0.0

0.02 -0.19
(-0.12) (0.98) (0.65) (0.52) (0.57) (-0.52)

0.9
-0.02

0.39 0.17
-0.03

0.11 -2.32
-0.06

0.4 -1.87
-0.01***

3.76 5.08
-0.0**

0.61 2.84
-0.0

0.01 1.5
(-1.55) (-1.05) (-1.6) (-5.62) (-2.06) (-0.41)

0.95
-0.01**

1.09 -0.4
-0.03**

0.84 -3.94
-0.06***

1.31 4.48
-0.01***

6.31 7.46
-0.0***

1.08 8.28
-0.0

0.07 1.14
(-2.35) (-2.41) (-3.24) (-6.64) (-2.75) (-1.07)
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Table 10: Quantile Predictive Model

yt,t+k = a+ bxt + εt,t+k
yt,t+k S[rt,t+k] K[rt,t+k]

k 1w 9w 26w 1w 9w 26w

xt α b/t(b) R2 R2
oos b/t(b) R2 R2

oos b/t(b) R2 R2
oos b/t(b) R2 R2

oos b/t(b) R2 R2
oos b/t(b) R2 R2

oos

QD

0.75
0.3

0.0 -1.02
5.28**

0.84 -5.89
7.7***

2.53 4.98
-2.17

0.49 1.54
-3.93

0.16 -5.53
-20.53***

1.2 -6.48
(0.14) (2.43) (4.28) (-1.3) (-0.94) (-3.18)

0.9
-0.08

0.01 0.16
1.41

0.4 -0.42
3.36***

1.82 -1.74
-1.19

0.4 -0.57
-2.02

0.14 -7.88
-11.01***

0.89 -2.17
(-0.08) (1.27) (3.59) (-1.37) (-0.94) (-3.3)

0.95
-0.21

0.03 0.77
1.02

0.39 -0.69
2.79***

1.8 -2.53
-0.92

0.42 -0.98
-1.67

0.19 -10.41
-8.87***

1.15 -0.8
(-0.25) (1.16) (3.78) (-1.36) (-0.99) (-3.4)

ED

0.75
-0.25

0.01 -0.88
4.83

0.49 -4.49
11.42***

2.29 2.67
-3.45

0.49 0.95
-6.3

0.15 -6.1
-33.22***

1.18 -6.49
(-0.08) (1.52) (4.32) (-1.41) (-1.03) (-3.53)

0.9
-0.41

0.02 0.41
1.89

0.42 0.08
5.79***

2.2 -0.15
-1.75

0.52 -0.11
-3.2

0.17 -8.33
-16.53***

1.32 -2.53
(-0.26) (1.18) (4.33) (-1.41) (-1.03) (-3.5)

0.95
-0.4

0.03 0.46
1.3

0.37 -0.51
4.39***

2.14 -0.77
-1.33

0.53 0.19
-2.39

0.2 -10.91
-13.3***

1.54 -0.88
(-0.33) (1.06) (4.3) (-1.41) (-1.01) (-3.7)

QA

0.75
0.1

0.15 -1.64
-0.11

0.1 3.91
0.12

0.36 2.9
-0.17*

0.66 -2.73
0.33

0.22 3.32
-0.93**

0.85 -5.24
(0.89) (-0.96) (1.16) (-1.95) (1.48) (-2.56)

0.9
0.27

0.39 -0.85
0.2

0.07 2.65
0.15

0.14 1.28
-0.31*

0.92 0.19
0.51

0.23 -1.07
-1.52**

0.85 0.58
(1.25) (0.87) (0.78) (-1.89) (1.2) (-2.17)

0.95
0.19

0.18 2.6
0.31

0.18 -0.64
0.09

0.02 4.84
-0.33

0.85 -0.45
0.73

0.42 -4.17
-1.43*

0.6 -0.03
(0.74) (1.16) (0.4) (-1.64) (1.43) (-1.67)

EA

0.75
0.35

0.13 -0.37
0.95

0.31 2.42
0.82

0.35 -0.01
-0.81

0.54 0.61
1.66

0.33 2.29
-4.63**

0.59 -3.65
(0.53) (1.4) (1.38) (-1.58) (1.29) (-2.16)

0.9
0.71

0.36 -1.31
1.26*

1.13 1.9
0.5

0.18 -0.52
-0.61

0.45 2.63
1.66

0.47 -0.89
-3.32

0.37 0.11
(1.12) (1.96) (0.87) (-1.23) (1.34) (-1.61)

0.95
0.86

0.62 3.63
1.33**

1.37 -4.41
0.18

0.05 2.35
-0.51

0.29 1.74
1.91*

0.65 -3.67
-1.84

0.14 -0.51
(1.63) (2.49) (0.38) (-1.21) (1.83) (-1.06)

QF

0.75
0.01

0.0 -1.06
-0.06

0.08 3.26
-0.15

0.52 0.72
-0.04

0.06 0.15
-0.39**

0.51 2.89
-0.0

0.0 1.45
(0.12) (-0.61) (-1.61) (-0.55) (-1.98) (-0.0)

0.9
-0.02

0.07 -0.2
-0.05

0.48 2.1
-0.1**

1.68 22.6
-0.01

0.0 2.76
-0.18**

0.63 3.91
0.44***

0.71 -7.27
(-0.38) (-1.11) (-2.58) (-0.2) (-2.1) (3.07)

0.95
-0.02

0.1 1.23
-0.04

0.42 -1.03
-0.07**

1.77 16.87
-0.01

0.01 1.09
-0.13**

0.7 1.36
0.28***

0.82 -7.65
(-0.52) (-1.2) (-2.57) (-0.26) (-2.22) (2.82)

EF

0.75
0.23

0.01 -0.61
-0.29

0.02 2.6
1.12

0.18 3.65
-0.71

0.37 -0.17
-2.33

0.3 2.64
-7.01**

0.96 1.33
(0.26) (-0.31) (1.39) (-1.01) (-1.33) (-2.44)

0.9
-0.4

0.36 -1.28
-0.74**

0.82 1.12
-0.41

0.34 24.67
-0.29

0.43 0.81
-1.52**

0.75 3.34
-2.41**

0.51 -6.24
(-1.14) (-2.03) (-1.3) (-1.04) (-2.21) (-2.11)

0.95
-0.24

0.54 0.15
-0.32*

0.9 -2.21
-0.28*

0.75 21.81
-0.13

0.33 -0.14
-0.5

0.57 1.32
-1.0*

0.3 -6.94
(-1.4) (-1.79) (-1.79) (-0.98) (-1.49) (-1.75)
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In the second half of Tables 7 and 10 we present the results of using linear and quantile

univariate regressions in predicting realized volatility. We find that QD and ED, the robust

measures of conditional dispersion, positively predict realized volatility for horizons up to 26

weeks, and that these results are economically and statistically significant. Contrary to how

point estimates behave in predicting expected returns, we find that the point estimates, t-

statistics and in sample R2s in predicting volatility decrease with the time horizon. This result

is consistent with the existence of volatility clusters (Engle (1982); Bollerslev (1986)). We find

that a one standard deviation increase in QD for an α = 0.75 is associated with an increase

in volatility of 0.62% for a one week horizon, 0.4% for a nine week horizon, and 0.16% for a

26 week horizon. Similarly for the ED measure, these estimations are 0.5 %, 0.29% and 0.13%

equivalently. We find that point estimates decrease as we approach the tails of the distribution

in the specifications, however the in-sample R2 remains in average unchanged. Finally, we find

that for horizons up to 9 weeks, the out-of-sample R2 is large and positive, varying from 13%

up to 52%. This evidence suggests that forward-looking measures of asymmetry perform better

in predicting realized volatility for short horizons.

We find that for longer horizons, the forward-looking measures perform better at estimating

the median of the realized volatility distribution as suggested by the positive and large out-of-

sample R2s in the last column compared to the baseline linear specification. In fact the out of

sample R2s in the quantile regressions that aim to predict volatility at longer horizons are two

or three times larger than in the linear specification. This is due to the fact that the realized

estimation of volatility over large horizons have extreme realizations in the data.

We proceed to study the predictive power of the robust forward-looking measures in explain-

ing higher moments. Tables 8 and 10 present the results of predicting the realized skewness and

kurtosis of the market portfolio for short and medium run horizons. We find that for horizons

of 26 weeks the QD and ED measures positively predict skewness. These results are statistically

significant at the 5% level for a nine week horizon and 1% level for a 26 week horizon. Point

estimates, t-statistics and in sample R2s increase with the horizon used in the regressions. For

the benchmark case, and setting α = 0.75, we find that a one standard deviation increase in QD

is associated with an increase in the expected realized skewness of 10.6 (nine weeks), and 15.2

(26 weeks). Equivalently, for the ED measure a one standard deviation increase is associated

with an increase in the expected realized skewness of 22.8 for 26 weeks.

We find some smaller evidence that the measure of asymmetry EF negatively predicts the

average of the realized kurtosis as we approach the tails of the distribution for longer horizons.

This relation is significant at the 1% level. There is some evidence that the quantities QA and

EA negatively predict the median of the realized kurtosis of the conditional distribution for

short horizons but the magnitude of the coefficients in the regression shifts sign when looking at
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horizons of nine weeks. This suggests a possible median reversion for longer horizons, predicting

a higher probability of extreme events at longer horizons.

Finally, we find that two of the measures calculated, QD (QF) negatively (positively) predict

the average kurtosis for horizons of 26 weeks. Additionally, we find that ED and EF negatively

predict the median of realized kurtosis. The point estimates are negative for the QD and the

ED, which become less negative as we approach the tails.

Since the existence of extreme observations hampers the ability to predict expected returns

(Alti and Titman (2019)), in unreported results we drop observations after 2019 spanning

the COVID crisis. Our results are also economically significant. For short horizons, taking

the α = 0.75 specification as benchmark, a one standard deviation (0.01) increase in the QD

measure, is related to an increase of 0.27% (1.67%) in average market returns over one (26)

week(s). Using the ED measure, we find that the same increase for an α = 0.75 is related

to an increase of 0.39% (2.39%) in expected returns over horizons of one (26) week(s). The

specifications using one and 26 weeks as horizons provide positive out-of-sample R2s when

using historical measures of asymmetry as a benchmark. For a one week horizon we obtain

out-of-sample R2s between 0.28 and 1.68 for the QD measure and between 0.84 and 1.92 for

the ED measure. For horizons of 26 weeks these out-of-sample R2s vary between 6.81 and

10.52 for the QD measure and between 6.62 and 9.4 for the ED measure. Although we obtain

in-sample R2s as large as 5.42 for the regressions using nine week horizons, out-of-sample R2s

are low, suggesting that forward-looking measures do not necessarily always beat the historical

measures for predicting expected returns. With respect to the option-implied measures QA

and EA we find that they can negatively predict expected returns for long horizons, although

significant at the 5% and 10% level, the economic magnitude is small.

7 Conclusion

Option market data are forward-looking but noisy and highly non-linear financial assets. A

proper empirical analysis of option-implied quantities thus requires solving these two problems

to propose meaningful (arbitrage-free) option-based indicators. In this paper we propose the

BIRS, a novel approach to fit the volatility smile that combines a cubic spline interpolation

with a quadratic program that produces arbitrage-free final estimates, and we use it to estimate

option-implied quantiles and expectiles which allows us to infer conditional robust indicators

of risk and return. To reduce as much as possible the fact that the option-market data impose

risk-neutrality we work with short term (weekly) options and investigate if the option-implied

indicators have predictive information content. The proposed quantities appear to have some

forecasting power - not shared by the equivalent quantities once inferred from backward-looking
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historical returns, both in- and out-of-sample at short, medium and long time horizon and for

both returns and volatility.

41



Bibliography

Aıt-Sahalia, Y. and J. Duarte (2003). Nonparametric option pricing under shape restrictions.

Journal of Econometrics 116 (1-2), 9–47.

Alexiou, L. and L. S. Rompolis (2022). Option-implied moments and the cross-section of stock

returns. Journal of Futures Markets 42 (4), 668–691.

Alti, A. and S. Titman (2019). A dynamic model of characteristic-based return predictability.

Journal of Finance 74 (6), 3187–3216.

Ammann, M. and A. Feser (2019). Robust estimation of risk-neutral moments. Journal of

Futures Markets 39 (9), 1137–1166.

Banz, R. W. and M. H. Miller (1978). Prices for state-contingent claims: Some estimates and

applications. The Journal of Business 51 (4), 653–672.

Barone-Adesi, G. (2016). VaR and CVaR implied in option prices. Journal of Risk and

Financial Management 9 (1), 2.

Barone-Adesi, G. and R. J. Elliott (2007). Cutting the hedge. Computational Economics 29 (2),

151–158.

Barone-Adesi, G., M. A. Finta, C. Legnazzi, and C. Sala (2019). Wti crude oil option implied

var and cvar: An empirical application. Journal of Forecasting 38 (6), 552–563.

Barone-Adesi, G., N. Fusari, A. Mira, and C. Sala (2020). Option market trading activity and

the estimation of the pricing kernel: A bayesian approach. Journal of Econometrics 216 (2),

430–449.

Barone-Adesi, G., C. Legnazzi, and C. Sala (2019). Option-implied risk measures: An empirical

examination on the S&P 500 index. International Journal of Finance & Economics 24 (4),

1409–1428.

Bellini, F. and E. Di Bernardino (2017). Risk management with expectiles. The European

Journal of Finance 23 (6), 487–506.

Bellini, F., L. Mercuri, and E. Rroji (2018). Implicit expectiles and measures of implied

variability. Quantitative Finance 18 (11), 1851–1864.

Bellini, F., E. Rroji, and C. Sala (2022). Implicit quantiles and expectiles. Annals of Operations

Research 313 (2), 733–753.

42



Black, F. and M. Scholes (1973). The pricing of options and corporate liabilities. Journal of

Political Economy 81 (3), 637–654.

Bliss, R. and N. Panigirtzoglou (2002). Testing the stability of implied probability density

functions. Journal of Banking and Finance 26, 381–422.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of

Econometrics 31 (3), 307–327.

Bollerslev, T., G. Tauchen, and H. Zhou (2009). Expected stock returns and variance risk

premia. Review of Financial Studies 22 (11), 4463–4492.

Bondarenko, O. (2003). Estimation of risk-neutral densities using positive convolution approx-

imation. Journal of Econometrics 116 (1), 85–112.

Bowley, A. L. (1920). Elements of statistics. Vol. 2. PS King.

Breeden, D. and R. Litzenberger (1978). Prices of State-Contingent Claims Implicit in Option

Prices. The Journal of Business 51 (4), 621–651.

Buss, A. and G. Vilkov (2012). Measuring equity risk with option-implied correlations. Review

of Financial Studies 25, 3113–3140.

Campa, J. M., P. K. Chang, and R. L. Reider (1998). Implied exchange rate distributions:

Evidence from OTC option markets. Journal of International Money and Finance 17 (1),

117–160.

Campbell, J. Y. and S. B. Thompson (2007). Predicting excess stock returns out of sample:

Can anything beat the historical average? Review of Financial Studies 21 (4), 1509–1531.

Carr, P. and L. Wu (2009). Variance risk premiums. Review of Financial Studies 22 (3),

1311–1341.

Chabi-Yo, F. and J. Loudis (2020). The conditional expected market return. Journal of

Financial Economics 137 (3), 752–786.

Christoffersen, P., K. Jacobs, and B. Y. Chang (2011). Forecasting with option implied infor-

mation. Handbook of Economic Forecasting .

Cochrane, J. (2008). The dog that did not bark: A defense of return predictability. Review of

Financial Studies 21 (4), 1533–1575.

43



Conrad, J., R. Dittmar, and E. Ghysels (2012). Ex ante skewness and expected stock returns.

Journal of Finance 68 (1), 85–124.

Driessen, J., P. J. Maenhout, and G. Vilkov (2009). The price of correlation risk: Evidence

from equity options. The Journal of Finance 64, 1377–1406.

Engle, R. F. (1982). Autoregressive Conditional Heteroscedasticity with Estimates of the

Variance of United Kingdom Inflation. Econometrica 50 (4), 987–1007.

Fengler, M. R. (2009). Arbitrage-free smoothing of the implied volatility surface. Quantitative

Finance 9 (4), 417–428.

Figlewski, S. (2018). Risk-neutral densities: A review. Annual Review of Financial Eco-

nomics 10, 329–359.

Floudas, C. A. and V. Visweswaran (1995). Quadratic optimization. In Handbook of Global

Optimization, pp. 217–269. Springer.
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Appendix

A The Quadratic Problem of Fengler (2009)

Without going into any mathematical detail, in this section we recall the Fengler (2009) quadratic

program used to obtain a smooth and arbitrage-free pricing surface. The interested reader is

referred to Fengler (2009) for further details. We first present the main steps and then repropose

the same procedure in a summarized schematic approach.

For a sample of strikes and European call option prices {ui, yi}, ui ∈ [a, b]:

minĝ

n∑
i=1

wi[yi − g(ui)]
2 + λ

∫ b

a
[f ′′(v)]2dv i = 1, . . . , n (38)

with strictly positive weights wi > 0 and smoothing parameter λ > 0. The minimizer ĝ repre-

sents a globally arbitrage-free European call price function and needs to be twice differentiable

Moreover, assuming yi to be a European call option with strike prices a = u0, . . . , un = b a func-

tion g is a cubic spline if on each sub-interval (a, u1), (u2, u3), . . . , (un, b) is a cubic polynomial

and is twice differentiable C([a, b]) such that:

g(u) =
n∑
i=0

1{[ui, ui+1]}si(u) (39)

where ui are the knots of the spline. Green and Silverman (1994) shows that an alternative

and convenient approach to represent the above cubic polynomial is given by the value second

derivative representation of the natural cubic spline, which allows one to cast the optimization

in 38 as a quadratic problem. Setting gi = g(ui) and γi = g′′(ui) and defining g = (g1, . . . , gn)T

and γ = (γ2, . . . , γn−1)T with γ1 = γn = 0, the natural spline can be completely specified by

g and γ. Not all possible vectors of g and γ give rise to valid solutions, and the sufficient and

necessary conditions for a valid solution are formulated via the matrices Q and R such that

minx − yTx+
1

2
xTBx (40)

subject to ATx = 0 (41)

where A = (Q,−RT ) and B is strictly positive definite.
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In summary: At each day t we solve the quadratic program:

minx − yTx+
1

2
x′Bx (42)

subject to the following constraints:

• ATx = 0

• λi > 0 (to guarantee convexity)

• g2−g1
h1
− h1

6 γ2 > − e−
∫ T
t rsds (to guarantee the price function to be non-increasing in price)

• −gn−gn−1

hn−1
− hn−1

6 γn−1 > 0 (again to guarantee the price function to be non-increasing in

price)

• g1 6 e−
∫ T
t qsdsSt (to prevent arbitrages)

• g1 6 e−
∫ T
t qsdsSt − e−

∫ T
t rsdsu1 (to prevent arbitrages)

• gn > 0 (to prevent zero or negative prices)

where: x− (gT , γT )T . To prevent calendar arbitrages, the same quadratic program could also

be applied to volatility surfaces by replacing the fifth constrained with:

gji < e
−

∫ tj+1
tj

qsds
gj+1
i , for i = 1, . . . , n (43)

for tj with j = 1, . . . ,m. For this paper j = 1, fixed at one week.

B The PCA of Bondarenko (2003)

Let Ld be the set of all possible probability densities, of which L1(−∞,∞) denotes the set

of all nonnegative functions that integrate to one. For the convolution, we start by fixing a

kernel function φ(x) ∈ Ld, which can be scaled with a bandwidth h to form a new density

φ(x)h := 1/hφ(x/h). The role of h is to control for the smoothness of the densities, thus playing

a crucial role in the final estimation. Given a fixed φ(x)h we define an approximating set of

all functions g as the set of admissible densities, Wh, which is obtained as the convolution of

φ(x)h and another positive density function u:

Wh := {g ∈ Ld|g = θh ∗ u for some u ∈ Ld} (44)
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where g and f are some integrable function such that:

f ∗ g :=

∫ ∞
−∞

f(x− y)g(y)dy (45)

Then, the risk-neutral distribution is inferred by selecting a density f̂(x) from the set of

admissible densities that optimally fits an empirically observed cross section of put option

prices pi with a finite set of strike prices x1 < ... < xn:

min
f̂∈Wh

n∑
i=1

(pi −D−2f̂(x))2 (46)

where D−2g(x) :=
∫ x
−∞(

∫ y
−∞)g(z)dz)dy represents the second integral of function g(x).

While exposed in continuous form, the presented optimization problem is solved numerically

through a discretization of the admissible sets:

W∆z
h :=

g ∈ Ld|g(x) =
∞∑

j=−∞
ajφh(x− zj) aj > 0

∞∑
j=−∞

aj = 1

 (47)

where ∆z is the grid step used to determine an equally spaced grid so that for j = 0,±, ....
the grid is defined over the real line as zj = ∆zj. It is worth noticing that W∆z

h ⊂ Wh, and

that the distance among the two sets is determined by the grid step ∆z. Given a discretized

admissible set, the discretized convolution is achieved on the equally spaced grid through a

mixture of Dirac delta functions and the basis density:

f = φh ∗ u where u(x) =

∞∑
j=−∞

ajδ(x− zj) aj > 0

∞∑
j=−∞

aj = 1 (48)

Throughout our analysis we follow Bondarenko (2003) and set the bandwidth h = 0.95h0, the

grid step ∆z = 0.5h and the basis density equal to the standard normal distribution:

θ(x) = n(x) :=
1√
2π
e−x

2/2 (49)

Finally, as the optimization problem is a minimization with respect to the observed put option

prices, we convert all call prices into put prices via the put-call parity.
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C The FS approach of Jackwerth (2004)

The FS approach recovers the risk-neutral distribution in three phases. First, we collect the

Black-Scholes option-implied volatilities σ̄i for all available strike prices i = 1, . . . , I. To do it,

we discretize the price grid Sj = S0 + j∆ for j = 1, . . . , J for ∆ equal to the difference between

two adjacent strike prices, so that the price grid coincides with the strike grid. Secondly, we

minimize the objective function:

min
σi

J∑
j=0

(σ′′j )2 +
(J + 1)λ

I∆4

I∑
i=0

(σi − σ̄i)2 (50)

where λ is a smoothing parameter that determines the trade off between smoothness and

goodness of fit, σi and σ̄i are the implied-volatility and the observed implied-volatility associated

with strike price i = 1, . . . , I, respectively. The same holds for σj for j = 1, . . . , J . The second

derivative σ′′j is numerically approximated by σ′′j = (σj−1 − 2σj + σj+1)/∆2, where delta is

the difference between two adjacent strike prices. Variables σj , σi are selected so that the

curvature of the volatility curve is minimized and the estimated volatility curve agrees with the

observed volatilities. The role of the penalty is to regulate the trade-off between the smallest

squared second-order derivative of the implied volatility curve (smoothness), and the minimum

of the sum of the squared errors, which is the distance between the estimated and the implied

volatilities (fit). Finally, after solving for the optimal volatility function, these quantities are

used to compute the Black and Scholes option prices and infer the risk-neutral distribution

by differentiating twice the obtained option prices with respect to the strike prices. For our

empirical applications (Section 4), while we fix ∆ = 2.5, we follow Jackwerth (2004) and

calibrate λ such that the inferred risk-neutral distributions are positive and smooth. Results

are summarized in table 11.

mean std min 25% 50% 75% max

Trade-off term 0.000188 0.000352 0.000000 0.000004 0.000016 0.000113 0.001491

Table 11: Summary statistics trade-off term: The table provides summary statistics on
the trade-off term(J + 1)λ/(I∆4) as in Jackwerth (2004).
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